Carbon Sources from Agricultural Industry for Ethanol and Butanol Production by Clostridium spp.

Authors

  • Chompunuch Glinwong Department of botany, Faculty of science, Chulalongkorn University 10330
  • Jantarush Comwien

Abstract

Bioethanol and biobutanol from lignocellulosic biomass are interested alternative energies. Ethanol and butanol can be blended to benzene in the different ratios for any purpose. This leads the combustion of mixed fuel to be more complete which is an important property of eco-friendly biofuels. In the past, substrate for ethanol and butanol production has been derived from monosaccharides, disaccharide and starchy substrate. This results in high cost for ethanol and butanol production. For this reason, this review focuses on agricultural and industrial wastes such as lignocellulosic biomass from corncob, wood dust, bagasses including waste and wastewater from agricultural waste. The wastes are abundant and have low value. They also will not raise the problems of food or fuels dilemma. These wastes can be applied as alternative carbon sources competing the expensive sugar and starch substrates. The goal of this review is to summarize               the possibility of using these wastes to produce ethanol and butanol as potential biofuels in  the future.Keyword: Bioalcohols, ethanol, butanol, biomass, agricultural waste 

References

Al-Shorgani, N. K., Kalil, M. S. and Yusoff, W. M. (2012). Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess and Biosystems Engineering, 35(5), 817-826.
Anun, L. and Somchai, L. (2014). (Translation) Information Memorandum - Thai Agro Energy Public Company Limited (TAE); Limited TAEPC, editor^editors.
Barnett, J. A., Payne, R. W., and Yarrow, D. 1983. Yeasts: characteristics and identification, 1st Ed., Cambridge University Press, Cambridge.
Blanch, H. W., Simmons, B. A. and Klein-Marcuschamer, D. (2011). Biomass deconstruction to sugars. Biotechnology Journal, 6(9), 1086-1102.
Bloyd, C. (2009). An update on ethanol production and utilization in Thailand, editor^editors.: Pacific Northwest National Laboratory.
Comwien, J., Boonvithaya, N., Chulaluksananukul, W., & Glinwong, C. (2015). Direct Production of Butanol and Ethanol from Cane Sugar Factory Wastewater and Cellulosic Ethanol Pilot Plant Wastewater by Clostridium beijerinckii CG1. Energy Procedia, 79, 556-561.
del Campo, A. G., Fernández, F. J., Cañizares, P., Rodrigo, M. A., Pinar, F. J., et al. (2014). Energy recovery of biogas from juice wastewater through a short high temperature PEMFC stack. International Journal of Hydrogen Energy, 39(13), 6937-6943.
Duran-Lapujade, P., Jansen, M. L. A., Daran, J. M., van Gulik, W., Winde, J. H., Pronk, J. T. 2004. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae, a chemostat culture study. J. Biol. Chem, 10, 9125-9138.
Dürre, P. (2007). Biobutanol: An attractive biofuel. Biotechnology Journal, 2(12), 1525-1534.
Ellis, J. T., Hengge, N. N., Sims, R. C., and Miller, C. D. (2012). Acetone, butanol, and ethanol production from wastewater algae. Bioresource technology, 111, 491-495.
Ezeji, T. C., Groberg, M., Qureshi, N. and Blaschek, H. P. (2003). Continuous production of butanol from starch-based packing peanuts. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 106(1-3), 375-382.
Ezeji, T. C., Qureshi, N. and Blaschek, H. P. (2007). Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. Journal of Industrial Microbiology and Biotechnology, 34(12), 771-777.
Ezeji, T.and Blaschek, H. P. (2008). Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic Clostridia. Bioresource Technology, 99(12), 5232-5242.
Green, E. M. (2011). Fermentative production of butanol-the industrial perspective. Current Opinion in Biotechnology, 22(3), 337-343.
Jang, Y. S., Lee, J., Malaviya, A., Seung, D. Y., Cho, J. H., et al. (2012). Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnology Journal, 7(2), 186-198.
Jiang, Y., Xu, C., Dong, F., Yang, Y., Jiang, W., et al. (2009). Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metabolic Engineering, 11(4-5), 284-291.
Jones, D. T. and Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50(4), 484-524.
Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K. and Kim, J. (2008). Fermentative butanol production by Clostridia. Biotechnology and Bioengineering, 101(2), 209-228.
Lee, J. (2009). Identification of multiple cracks in a beam using natural frequencies. Journal of Sound and Vibration, 320(3), 482-490.
Lee, J. Y., Jang, Y.-S., Lee, J., Papoutsakis, E.T., and Lee, S.Y. (2009). Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnology Journal, 4(10), 9.
Li, S. Y., Srivastava, R. and Parnas, R. S. (2011). Study of in situ 1-butanol pervaporation from A-B-E fermentation using a PDMS composite membrane: Validity of solution-diffusion model for pervaporative A-B-E fermentation. Biotechnology Progress, 27(1), 111-120.
Li, X., Shi, Z. and Li, Z. (2014). Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop. Bioprocess and Biosystems Engineering, 37(8), 1609-1616.
Liu, Z., Ying, Y., Li, F., Ma, C. and Xu, P. (2010). Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology and Biotechnology, 37(5), 495-501.
López-Contreras, A. M., Claassen, P. A. M., Mooibroek, H. and De Vos, W. M. (2000). Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Applied Microbiology and Biotechnology, 54(2), 162-167.
Lu, C., Zhao, J., Yang, S. T. and Wei, D. (2012). Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technology, 104, 380-387.
Lütke-Eversloh, T. and Bahl, H. (2011). Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Current Opinion in Biotechnology, 22(5), 634-647.
McCabe, B. K., Hamawand, I., Harris, P., Baillie, C. and Yusaf, T. (2014). A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production. Applied Energy, 114, 798-808.
Mariano, A. P., Qureshi, N., Filho, R. M. and Ezeji, T. C. (2011). Bioproduction of butanol in bioreactors: New insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnology and Bioengineering, 108(8), 1757-1765.
Marchal, R., Blanchet, D. and Vandecasteele, J. P. (1985). Industrial optimization of acetone-butanol fermentation: a study of the utilization of Jerusalem artichokes. Applied Microbiology and Biotechnology, 23(2), 92-98.
Nielsen, D. R. and Prather, K. J. (2009). In situ product recovery of n-butanol using polymeric resins. Biotechnology and bioengineering, 102(3), 811-821.
Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Oon, Y. S., et al. (2015). Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresource Technology, 186, 270-275.
Ouephanit, C., Virunanon, C., Burapatana, V., & Chulalaksananukul, W. (2011). Butanol and ethanol production from tapioca starch wastewater by Clostridium spp. Water Science & Technology, 64(9), 1774-1780.Papoutsakis, E. T. (2008). Engineering solventogenic Clostridia. Current Opinion in Biotechnology, 19(5), 420-429.

Pfromm, P. H., Amanor-Boadu, V., Nelson, R., Vadlani, P., Madl, R. 2010. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass and Bioenergy, 34, 515-524.
Qureshi, N. and Blaschek, H. P. (2001). Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. Journal of Industrial Microbiology and Biotechnology, 27(5), 287-291.
Qureshi, N., Saha, B. C.and Cotta, M. A. (2007). Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 30(6), 419-427.
Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S. and Cotta, M. A. (2008). Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource technology, 99(13), 5915-5922.
Qureshi, N., Saha, B. C., Dien, B., Hector, R. E. and Cotta, M. A. (2010). Production of butanol (a biofuel) from agricultural residues: Part I - Use of barley straw hydrolysate. Biomass and Bioenergy, 34(4), 559-565.
Qureshi, N., Saha, B. C., Hector, R. E., Dien, B., Hughes, S., et al. (2010). Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates. Biomass and Bioenergy, 34(4), 566-571.
Rasi, S., Lehtinen, J. and Rintala, J. (2010). Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants. Renewable Energy, 35(12), 2666-2673.
Roffler, S. R., Blanch, H. W. and Wilke, C. R. (1988). In situ extractive fermentation of acetone and butanol Biotechnology and Bioengineering, 31(2), 135-143.
Tashiro, Y., Takeda, K., Kobayashi, G. and Sonomoto, K. (2005). High production of acetone-butanol-ethanol with high cell density culture by cell-recycling and bleeding. Journal of Biotechnology, 120(2), 197-206.
Thang, V. H., Kanda, K. and Kobayashi, G. (2010). Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Applied Biochemistry and Biotechnology, 161(1-8), 157-170.
Tracy, B. P., Jones, S. W., Fast, A. G., Indurthi, D. C. and Papoutsakis, E. T. (2012). Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology, 23(3), 364-381.
Turcotte, B., Liang, X. B., Robert, F. and Soontorngun, N. 2009. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Research, 10: 2-13.
Wang, X.-H., Wang, X., Huppes, G., Heijungs, R. and Ren, N.-Q. (2015). Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China. Journal of Cleaner Production, 94, 278-283.
Xue, C., Zhao, J., Lu, C., Yang, S. T., Bai, F., et al. (2012). High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnology and Bioengineering, 109(11), 2746-2756.
Yu, M., Zhang, Y., Tang, I. C. and Yang, S. T. (2011). Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering, 13(4), 373-382.
Yang, D., Deng, L., Zheng, D., Liu, G., Yang, H., et al. (2015). Separation of swine wastewater into solid fraction, concentrated slurry and dilute liquid and its influence on biogas production. Fuel, 144, 237-243.

Downloads

Published

2016-03-16