Development of Drifters and Its Application on Floating Object Study Using the Numerical Model

Authors

  • Bojara Asvakittimakul Kasetsart University
  • Suriyan Saramul
  • Jitraporn Phaksopa

Abstract

The marine environmental problems, such as spreading of marine pollutants, marine debris, and even marine incident cases are lately continuously increased. Therefore, the study/prediction of floating objects in the sea is becoming an important factor to role in management. This study focuses on the development of drifter for tracking floating objects in the coastal area of Thailand (Rayong and Krabi Province). Three-dimensional hydrodynamic model, ROMS, was also applied to compare modeled track with drifter’s track. The results showed that the developed drifters were functionally and efficiently worked even in different kinds of coastal morphology and forcing (i.e., in Rayong area, drifters were driven by wind, while Lanta Island area, drifters were mainly forced by tides). The comparison between drifter’s track and modeled track shows errors approximately 3 kilometers in radial distance. However, the modeled track could be improved by considering the effects of waves and by including the local observed atmospheric data to make the modeled track more realistic. Hence, it could be used in a sea management plan and rescue operation in the future.            Keywords:  ROMS; Drifter; Coastal current; Numerical Model

Author Biography

Bojara Asvakittimakul, Kasetsart University

Faculty of Fisheries, Department of Marine Science 

References

Bleck, R., & Benjamin, S. (1993). Regional Weather Prediction with a Model Combining Terrain-following and Isentropic Coordinates. Part I: Model Description. Monthly Weather Review - MON WEATHER REV, 121.

Bleck, R., & Boudra, D. (1981). Initial Testing of a Numerical Ocean Circulation Model Using a Hybrid (Quasi-Isopycnic) Vertical Coordinate. Journal of Physical Oceanography - J PHYS OCEANOGR, 11, 755-770.

Bouzaiene, M.; Menna, M.; Elhmaidi, D.; Dilmahamod, A.F.; Poulain, P.-M. Spreading of Lagrangian Particles in the Black Sea: A Comparison between Drifters and a High-Resolution Ocean Model. Remote Sens. 2021, 13, 2603.

Carniel, S., Warner, J. C., Chiggiato, J., & Sclavo, M. (2009). Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event. Ocean Modelling, 30(2), 225-239.

Chanthasiri, N. (2014). Numerical Modeling of coral Larval Dispersal in Sattahip Coastal Area, Chon Buri Province.
(Thesis for Master of Science, Department of Marine Science, Faculty of Science, Chulalongkorn
University.(in Thai)

Chen, W., Chen, K., Kuang, C., Zhu, D. Z., He, L., Mao, X., Liang, H., and Song, H. (2016). Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China. Applied Ocean Research, 54, 12-25.

Dagestad, K.-F., & Röhrs, J. (2019). Prediction of ocean surface trajectories using satellite derived vs. modeled ocean currents. Remote Sensing of Environment, 223, 130-142.

Davis, R. E. (1985). Drifter observations of coastal surface currents during CODE: The method and descriptive view. Journal of Geophysical Research: Oceans, 90(C3), 4741-4755.

Elodie Duyck, Marieke Femke De Jong. 2021. Circulation Over the South-East Greenland Shelf and Potential for
Liquid Freshwater Export: A Drifter Study. Geophysical Research Letters. Volume48, Issue5.

Egbert, G., Bennett, A. F., & Foreman, M. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res, 99, 821-852.

Egbert, G., & Erofeeva, S. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Tech., 19, 183-204. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., & Edson, J. B. (2003). Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. Journal of Climate, 16(4), 571-591. doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin,
S., Castillo Sanchez, J. M., & Mayorga Adame, C. G. (2018). AMM15: A new high-resolution NEMO configuration for operational simulation of the European north-west shelf. Geoscientific Model Development, 11(2), 681–696. https://doi.org/10.5194/gmd-11-681-2018

Guihou, K., Polton, J., Harle, J., Wakelin, S., O'Dea, E., & Holt, J. (2018). Kilometric scale modeling of the North
West European shelf seas: Exploring the spatial and temporal variability of internal tides: Modeling of the Atlantic European shelf. Journal of Geophysical Research: Oceans, 123, 688–707.
https://doi.org/10.1002/2017JC012960

Haza, A.C., Özgökmen, T.M., Griffa, A. et al. Transport properties in small-scale coastal flows: relative dispersion from VHF radar measurements in the Gulf of La Spezia. Ocean Dynamics 60, 861–882 (2010). https://doi.org/10.1007/s10236-010-0301-7

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., . . . Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. doi:10.1002/qj.3803

Isobe, A., Kako, S. i., Chang, P.-H., & Matsuno, T. (2009). Two-Way Particle-Tracking Model for Specifying Sources of Drifting Objects: Application to the East China Sea Shelf. Journal of Atmospheric and Oceanic Technology, 26(8), 1672-1682. doi:10.1175/2009JTECHO643.1

Lamsawat, P., Phaksopa, J., & Sojisuporn, P. (2020). Tracking of Floating Objects in the Area of Chao Phraya River Mouth by Using Numerical Model. Burapha Science Journal, 25(3), 953-967. (in Thai)

Lee, K., Kim, T.-G., & Cho. (2020). Influence of Tidal Current, Wind, and Wave in Hebei Spirit Oil Spill Modeling. Journal of Marine Science and Engineering, 8, 69. doi:10.3390/jmse8020069

Marta-Almeida, M., Ruiz-Villarreal, M., Pereira, J., Otero, P., Cirano, M., Zhang, X., & Hetland, R. (2013). Efficient tools for marine operational forecast and oil spill tracking. Marine pollution bulletin, 71. doi:10.1016/j.marpolbul.2013.03.022

Meyerjürgens, J., Ricker, M., Schakau, V., Badewien, T. H., & Stanev, E. V. (2020). Relative dispersion of surface drifters in the North Sea: The effect of tides on mesoscale diffusivity. Journal of Geophysical Research: Oceans, 125, e2019JC015925. https://doi.org/10.1029/2019JC015925

Morey, S., Wienders, N., Dukhovskoy, D., & Bourassa, M. (2018). Measurement Characteristics of Near-Surface Currents from Ultra-Thin Drifters, Drogued Drifters, and HF Radar. Remote Sensing, 10, 1633. doi:10.3390/rs10101633

G. Novelli, C.M. Guigand, C. Cousin, E.H. Ryan, N.J.M. Laxague, H. Dai, B.K. Haus, T.M. Özgökmen.
A biodegradable surface drifter for ocean sampling on a massive scale J. Atmos. Ocean. Technol., 34
(2017), pp. 2509-2532.

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. doi:https://doi.org/10.1016/j.ocemod.2004.08.002

Srinivasan, R. (2014). Design of GPRS based Drifter for Measurement of Surface Current Velocity in Coastal Waters.

Subbaraya, S., Breitenmoser, A., Molchanov, A., Muller, J., Oberg, C., Caron, D., & Sukhatme, G. (2016). Circling the Seas: Design of Lagrangian Drifters for Ocean Monitoring. IEEE Robotics & Automation Magazine, 23, 1-1. doi:10.1109/MRA.2016.2535154

Umlauf, L., & Burchard, H. (2003). A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61, 235-265. doi:10.1357/002224003322005087

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., . . . Wigley, R. (2015). A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8), 331-345. doi:https://doi.org/10.1002/2015EA000107

Downloads

Published

2022-09-21