Influence of Anode Bias Voltage on Microstructure Properties of TiB2 Thin Film Prepared by DC Magnetron Sputtering

Authors

  • Autthapol - Chuenprakhon Department of Physics, Faculty of Science, Mahasarakham University
  • Phitsanu Poolcharuansin

Abstract

       In this research, titanium diboride (TiB2) thin film was prepared using DC magnetron sputtering technique. From titanium diboride target and deposited on Si wafer (100). To study the influence of positive anode bias voltage (Va) in the range of 0 to +125 V that affects the plasma properties and structural properties of thin films. The measurement results of TiB2 target deposition rate using quartz crystal micro-balance technique. It was found that the film deposition rate hasn’t changed as the anode bias voltage increased. Furthermore, the plasma potential was measured by the Langmuir probe, the result shows that the plasma potential was increased as the anode bias voltage increased, while the electron temperature (Te) and electron density (ne) haven’t changed. The microstructure of TiB2 has been investigated using X-ray diffraction (XRD). It was found that hexagonal TiB2 structure with (001) preferred orientation and X-ray reflection (XRR) This makes known the thickness, roughness, and density of the TiB2 thin film. when the anode potential increases Effect of thickness value and the roughness of the film has a lower trend, while the density of TiB2 thin film increased in the range of 4.36 to 4.48 g/cm3. The deposited thin film by anode bias voltage technique Causing a change in the plasma potential and this directly affects the ion energy that collides with the film surface. And as a result, the microstructural properties of the film change. Keywords :  DC magnetron sputtering ; anode biasing ; microstructure properties ; plasma properties

Author Biography

Autthapol - Chuenprakhon, Department of Physics, Faculty of Science, Mahasarakham University

Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

References

Alexander, L., & Klug, H. P. J. J. o. A. P. 1950. Determination of crystallite size with the X‐Ray spectrometer.
Journal of Applied Physics, 21(2), 137-142.

Anders, A. J. T. S. F. 2010. A structure zone diagram including plasma-based deposition and ion etching.
Journal of Applied Physics, 518(15), 4087-4090.

Arslan, E., Totik, Y., Celik, A., & Efeoglu, I. J. S. e. 2010. Effect of annealing on adhesion of TiB2 films deposited by pulsed magnetron sputtering. Surface engineering, 26(8), 567-570.

Berger, M., Karlsson, L., Larsson, M., & Hogmark, S. J. T. S. F. 2001. Low stress TiB2 coatings with improved tribological properties. Thin Solid Films, 401(1-2), 179-186.

Bronsgeest, M. 2016. Ion beam sputter deposition. Nov 7, 2016, https://polygonphysics.com/.

Choi, H., Choi, S.-K., Anderson, O., & Bange, K. J. T. S. F. 2000. Influence of film density on residual stress and resistivity for Cu thin films deposited by bias sputtering. Thin Solid Films, 358(1-2), 202-205.

Conde, 2011. An introduction to Langmuir probe diagnostics of plasmas. 1-28.

Hellgren, N., Thörnberg, J., Zhirkov, I., Sortica, M. A., Petrov, I., Greene, J. E., Hultman, L., & Rosen, J. J. V. 2019. High-power impulse magnetron sputter deposition of TiBx thin films: Effects of pressure and growth temperature. Vacuum, 169, 108884.

Kavitha, A., Kannan, R., & Rajashabala, S. J. M. S.-P. 2017. Effect of target power on the physical properties of Ti thin films prepared by DC magnetron sputtering with supported discharge. Materials Science-Poland, 35(1), 173-180.

Larsson, T., Blom, H.-O., Berg, S., & Östling, M. J. T. S. F. 1989. Reactive sputtering of titanium boride. Thin Solid Films, 172(1), 133-140.

Mattias, B., Mats, L., Surface, H. S. J., & Technology, C. 2000. Evaluation of magnetron-sputtered TiB2 intended for tribological applications. Surface and Coatings Technology, 124(2-3), 253-261.

Mikula, M., Grančič, B., Buršíková, V., Csuba, A., Držík, M., Kavecký, Š., Plecenik, A., & Kúš, P. J. V. 2007. Mechanical properties of superhard TiB2 coatings prepared by DC magnetron sputtering. Vacuum, 82(2), 278-281.
Nelson, G., & Borders, J. 1980. Surface composition and erosion yields for CVD TiB/sub 2/films subjected to low energy deuterium ion bombardment. Journal of Nuclear Materials

Park, B., Jung, D.-H., Kim, H., Yoo, K.-C., Lee, J.-J., Joo, J. J. S., & Technology, C. 2005. Adhesion properties of TiB2 coatings on nitrided AISI H13 steel. Surface and Coatings Technology, 200(1-4), 726-729.

Petrov, I., Hall, A., Mei, A. B., Nedfors, N., Zhirkov, I., Rosen, J., Reed, A., Howe, B., Greczynski, G., Birch, J. J. J. o. V. S., Technology A: Vacuum, S., & Films. 2017. Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, Films
35(5), 050601.

Ronald, M. 2000. Material properties of titanium diboride. Journal of Research of the National institute of standards and Technology, 105(5), 709.

Xia, M.-j., Ding, H.-y., Zhou, G.-h., & Zhang, Y. J. T. o. N. M. S. o. C. 2013. Improvement of adhesion properties of TiB2 films on 316L stainless steel by Ti interlayer films. Transactions of Nonferrous Metals Society of China 23(10), 2957-2961.

Yasaka, M. J. T. R. J. 2010. X-ray thin-film measurement techniques. The Rigaku Journal 26(2), 1-9.

Zhang, T. F., Gan, B., Park, S.-m., Wang, Q. M., Kim, K. H. J. S., & Technology, C. 2014. Influence of negative bias voltage and deposition temperature on microstructure and properties of superhard TiB2 coatings deposited by high power impulse magnetron sputtering. Surface and Coatings Technology, 253, 115-122.

Zhao, Y., Lin, G., Xiao, J., Du, H., Dong, C., & Gao, L. J. A. S. S. 2011. Ti/TiN multilayer thin films deposited by pulse biased arc ion plating. Applied Surface Science 257(7), 2683-2688.

Zhirkov, I., Petruhins, A., Naslund, L.-A., Kolozsvári, S., Polcik, P., & Rosen, J. J. A. P. L. 2015. Vacuum arc plasma

Downloads

Published

2022-03-08