Result of Using Biofloc on Growth and Water Quality Control in Lates calcarifer Culture in Freshwater

Authors

  • Supannee Suwanpakdee สาขาวิชาประมง คณะทรัพยากรธรรมชาติ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสกลนคร จังหวัดสกลนคร
  • Patcharawalai Sriyasak สาขาวิชาประมง คณะทรัพยากรธรรมชาติ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสกลนคร จังหวัดสกลนคร
  • Nattiya Chumnanka สาขาวิชาประมง คณะทรัพยากรธรรมชาติ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสกลนคร จังหวัดสกลนคร
  • Pornpimol Pimolrat สาขาวิชาการเพาะเลี้ยงสัตว์น้ำชายฝั่ง มหาวิทยาลัยแม่โจ้-ชุมพร อำเภอละแม จังหวัดชุมพร

Abstract

This study aimed to investigate biofloc system on growth and water quality of Lates calcarifer in freshwater. The experiment was divided into 2 groups; group 1 was a control group which was not used biofloc. Group 2 was used biofloc system from rice barn as carbon source which was Carbon-to-Nitrogen ratio 20:1. Stocking density has been adjusted 10 fish/m3 in about 180 days. The experiment group which was treated with biofloc system and the control group have final weight (403.45±46.45 and 400.40±46.94 g/fish), weight gain (373.95±45.63 and 370.75±46.94 g/fish), average daily gain (ADG) (2.08±0.25and 2.06±0.26 g/fish/day), feed conversion ratio (FCR) (1.47±0.19 and 1.54±0.20), food conversion efficiency (FCE) (68.94±8.51 and 66.13±8.54 %), survival rate (76.67±7.64 and 71.67±5.77 %) and fish production (6,186±616 and 5,739±462 g/tank), no differences were found between 2 groups (p>0.05). The water quality parameter was no differences between dissolved oxygen, water temperature, nitrite and nitrate (p>0.05). A difference was found in pH, total suspend solid and total ammonia concentration, the experiment group had lower level than the control group (p<0.05). Using biofloc system can reduce total ammonia of 15.15-75.13% when compared with control group. This study highlighted using biofloc system can reduce total ammonia and control water quality which was not harm fish when raised Lates calcarifer in freshwater.         Keywords : biofloc ; Lates calcarifer ; growth, water quality   

References

Ahmad, H.I., Verma, A.K., Rani, A.M.B., Rathore, G., Saharan, N., & Gora A.H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61-67.

APHA. (1980). Standard Methods for The Examination of Water and Wastewater. Washington DC: American Public Health Association.

Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., & Azim, M.E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280, 117-123.

Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, 140-147.

Azim, M.E., & Little, D.C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and walfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29-35.

Bagenal, T. (1978). Methods for the Assessment of Fish Production in Fresh Waters. 3rd Edition. Oxford, London: Blackwell Scientific Publications.

Boyd, C.E. (1998). Water quality for pond aquaculture. Alabama: Alabama Agricultural Experiment Station, Auburn University.

Boyd, C.E., & Tucker, C.S. (1992). Water Quality and Pond Soil Analyses for Aquaculture. Alabama: Alabama Agricultural Experiment Station, Auburn University.

Boyd, C.E., & Tucker, C.S. (1998). Pond Aquaculture Water Quality Management. USA: Kluwer Academic Publishers.

Browdy, C.L., Bratvold, D., Stokes, A.D., & MaIntosh, R.P. (2001). Perspective on the application of closed shrimp culture systems. In C.L. Browdy, & D.E. Jory. (Eds.), The new wave, Proceeding of the Special session on sustainable shrimp culture, Aquaculture 2001. (pp. 20-34). Baton Rouge, USA: The world Aquaculture Society.

Burford, M.A., Preston, N.P., Glibert, P.M., & Dennison, W.C. (2004). Tracing the fate of 15N enriched feed in an intensive shrimp system. Aquaculture, 206, 199-216.

Crab, R., Kochva, M., Verstraete, W., & Avnimelech, Y. (2009). Bio-flocs technology application in overwintering of tilapia. Aquaculture Engineering, 40, 105-112.

Forteath, N. (1990). A Handbook on Recirculating Systems for Aquatic Organisms. Hobart: Fishing Industry Training Board of Tasmania Inc.


Guozhi, L., Qi, G., Chaohui, W., Wenchang, L., Dachuan, S., Li, L., & Hongxin, T. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture,
422-423, 1-7.

Hari, B., Kurup, M.B., Varghese, T., Schrama, J.W., & Verdegem, M.C.S. (2004). Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241, 179 -194.

Lee, T.G. (2000). Development of ultrasonic irradiation process for the control of cyanobacteria bloom in eutrophic lake. Doctoral dissertation. Tsukuba University. 130 pp.

Martinez-Cordova, L.R., Emerenciano, M., Miranda-Baeza, A., & Martinez-Porchas, M. (2014). Microbial-based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, 6, 1-18.

Predalumpaburt, Y., Laongsiriwong, N., Assavaaree, A., Thompolkrang, P., Ongart, K., Muangyao, P., Nooklum, W., Thongkanarak, P., Intrasungkha, N., & Roongkamnertwongsa, S. (2016). Development of a prototype farm of commercial sea bass culture with high stocking density and circulating water system. Retrieved July 20, 2020, from http://www.nicaonline.com/download/20170828_001.pdf

Sompong, U., Inkam, M., Promya, J., & Whangchai, N. (2018). Effect of biofloc technology (BFT) on red tilapia larvae aquaculture. Khon Kaen Agriculture Journal, 46(5), 833-842. (in Thai)

Swingle, H.S. (1974). Experiments of Pond Fertilization. Alabama: Alabama Agricultural Experiment Station.

Downloads

Published

2021-01-05