Identities on the New Generalizations of Fibonacci and Lucas Sequences

Authors

  • Kanpitcha Saetang
  • Paratee Surakamhang
  • Saranya Hangsawat

Abstract

In this paper, we introduced the sequences  and  which are defined by the recurrence relations  and for positive integer with initial conditions,  and  respectively, where  and  are positive real numbers and. We study the generating functions, Binet’s formulas. Moreover, we also provide generalized identities of  and  by using Binet’s formulas for derivation. Keywords : Fibonacci  sequence, Lucas sequence, generating functions,  Binet’s formulas

Author Biographies

Kanpitcha Saetang

   

Paratee Surakamhang

Kanpitcha Saetang, Paratee Surakamhang and Saranya Hangsawat*

References

Bilgici, G. (2014). New generalization of Fibonacci and Lucus sequences. Applied Mathematical Sciences,
29(8), 1429-1437.
Edson, M. and Yayenie, O. (2009). A new generalization of Fibonacci sequences and extended binet formula.
Intergers, 9, 639-654.
Edson, M., Lewis, S. and Yayenie, O. (2011). The k-Periodic Fibonacci sequences and extended binet
formula. Intergers, 11, 739-751.
Falcon, S. and Plaza, A. (2007).The k-Fibonacci sequence and pascal 2- triangle. Chaos, Solitons and
Fractals, 33, 38-49.
Horadam, A.F. (1961). A generalized of Fibonacci sequences. Amer. Math. Monthly, 68, 455-459.
Klein, S.T. (1991). Combinatorial Representation of generalized Fibonacci numbers. Fibonacci Quarterly,
29, 124-131.
Melham, R.S. and Shannon, A.G. (1995). A generalization of the Catalan identity and some consequences.
Fibonacci Quarterly, 33, 82-84.

Downloads

Published

2018-11-21

Issue

Section

บทความวิจัยจากการประชุมวิชาการระดับชาติ"วิทยาศาสตร์วิจัย"ครั้งที่ 10