Extreme Rainfall Analysis using L-moments Method

Authors

  • Kritiya Seansak
  • Arun Keawman
  • Atcharawan Shantapot
  • Piyapatr Busababodhin

Abstract

The aim of this study is to analyze the Generalized Extreme Value distribution (GEVD), Pareto type III distribution (3PD) and Generalized Logistic Distribution (GLO) with L-moment estimates on the extreme annual rainfall data at 25 weather stations in Northeast of Thailand.  The rainfall data gathered from 1984 to 2014.  The criterion for selected best model is relative root-mean-square error or RRMSE. The results indicate that best model for these regions are GLO, GEVD and 3PD with respect to 56%, 36% and 8%, respectively.  For the return level for 10, 25, 50 and 100 years return periods indicate that Tha-Tum weather station and Surin agromet weather station have highest return level than other station. Consequently, to solve and prevent the extreme rainfall problem, these stations should be the first considered. Keywords :  Generalized Extreme Value Distribution, Pareto type III Distribution, Generalized Logistic Distribution,                     L-moments, extreme annual rainfall

Author Biography

Kritiya Seansak

    

References

Ani, S. and Abdul, A.J. (2011). Fitting the Generalized logistic distribution by LQ-moments.
Applied Mathematical Science, 5(54), 2663-2676.
Kumphon, B., Keawmun, A., Seenoi, P. (2012). A Rainfall Distribution for the Lampao Site in the Chi River Basin.
Journal of Water Resource and Protection, 4, 866-869.
Busababodin,P. and Kaewmun, A. (2015). Extreme Values Statistics. The Journal of KMUTNB., 25(2),
316-324. (in Thai)
Busababodin,P., Siriboon, M., Kaewmun, A. (2015). Modeling of Extreme Precipitation in Upper Northeast of
Thailand. Burapha Science Journal, 20(1), 106-117. (in Thai)
Climatological Center. (2012). Retrieved July 29, 2016 from https://www.tmd.go.th/info/info.php?FileID=29
Coles, S. (2001). An Introduction to Statistical Modeling of Extremes Values. Great Britain. Springer-varlag
London Limited.
Hosking, JRM.(1990). L-moments : analysis and estimation of distribution using linear combinations of order
statistics. JR stat Socser B, 52, 105-124.
Keawmun, A., Budchamruei, P., & Busababodhin, P. (2015). Modeling Monthly Precipitation in Central Northeast
of Thailand. KKU Science Journal, 43(1), 137-147. (in Thai)
Nadarajah, S., Dongseok, C. (2007). Maximum daily rainfall in South Korea. Journal of Earth System Science,
116(4), 311-320.
Park JS. , J.B.Y., Md.Sharwar M., and Y.A. Seo,.(2014). A three-parameter kappa distribution with hydrologic
application: a generalized gumbel distribution. Springer-Verlag Berlin Heidelberg.
Wangwongwiroj, N. (2008). Hydrology.King Mongkut's University of Technology Thonburi, 51(1).

Downloads

Published

2018-03-19