Qualitative Analysis of Fibre-Degrading Enzymes Production by Bacillus Isolated from Native Swine Manures

Authors

  • Kittiya Khongkool Biotechnology program, Faculty of Science, Thaksin University, Phatthalung Campus http://orcid.org/0000-0002-5304-6729
  • Benyapa Prakit Microbiology program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung Campus
  • Rungravee Chiyod Microbiology program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung Campus
  • Thanchanok Suttibul Microbiology program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung Campus
  • Monthon Lertworapreecha Microbial Technology for Agriculture Food and Environment Research Center, Faculty of Science, Thaksin University, http://orcid.org/0000-0002-5603-394X

Abstract

Fibre-degrading enzymes play an important role in fibre digestion, non-starch polysaccharides, and other structural polysaccharides in animal feed, especially in plant-based diets. It was reported that the microflora in an animal's gut could produce these enzymes. This study isolated and screened Bacillus spp. produces fibre-degrading enzymes (cellulase, xylanase, and pectinase) from native swine manures. One hundred and three isolates of the presumptive Bacillus spp. were isolated from 40 faecal samples of healthy native pigs, and their qualitative ability to produce fibre-degrading enzymes was screened by agar plate assay. Eight isolates of Bacillus spp., namely, Bacillus albus NA11.3, Bacillus cereus NG3.6, Bacillus cereus NM1.1, Bacillus amyloliquefaciens NL1.2, Bacillus amyloliquefaciens NL1.3, Bacillus subtilis NM1.5, Bacillus subtilis NM1.7, and Bacillus subtilis NM2.2, are the isolates that could produce cellulase, xylanase, and pectinase at the highest level. These newly isolated strains are the most suitable microorganisms for further studies to assess their quantitative enzyme production. Key Words: Bacillus, cellulase, xylanase, pectinase, enzyme production screening

References

Barbosa, T. M., Serra, C. R., La Ragione, R. M., Woodward, M. J., & Henriques, A. O. (2005). Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and environmental microbiology, 71(2), 968-978.

Burlacu, A., Cornea, C., & Israel-Roming, F. (2016). Screening of xylanase-producing microorganisms. Research Journal of Agricultural Science, 48(2), 8-15.

Chaiyawan, N., Taveeteptaikul, P., Wannissorn, B., Ruengsomwong, S., Klungsupya, P., Buaban, W., & Itsaranuwat, P. (2010).
Characterization and probiotic properties of Bacillus strains isolated from broiler. The Thai Journal of Veterinary Medicine, 40(2), 207-214.

Charoensook, R., Knorr, C., Brenig, B., & Gatphayak, K. (2013). Thai pigs and cattle production, genetic diversity of livestock and strategies for preserving animal genetic resources. Maejo International Journal of Science and Technology, 7(1), 113-132.

Dominguez-Moñino, I., Jurado, V., Gonzalez-Pimentel, J. L., Miller, A. Z., Hermosin, B., & Saiz-Jimenez, C. (2018). Bacillus onubensis sp. nov., isolated from the air of two Andalusian caves. Systematic and Applied Microbiology, 41(3), 167-172.

Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci, M., & Cutting, S. M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Research in Microbiology, 160(2), 134-143.

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57(5), 503-507.

Lan, P. T. N., Sakamoto, M., & Benno, Y. (2004). Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiology and Immunology, 48(12), 917-929.

Logan, N. A., & Vos, P. D. (2015). Bacillus. Bergey's manual of systematics of archaea and bacteria, 1-163.

Mohandas, A., Raveendran, S., Parameswaran, B., Abraham, A., Athira, R. S., Kuruvilla Mathew, A., & Pandey, A. (2018). Production of pectinase from Bacillus sonorensis MPTD1. Food technology and biotechnology, 56(1), 110-116.

Naeem, M., Ahmed, I., Ahmed, S., Ahmed, Z., Riaz, M., & Ghazanfar, S. (2018). Screening of cattle gut associated Bacillus strains for their potential use as animal probiotic. Indian Journal of Animal Research. doi:10.18805/ijar.B-948.

Ojha, B., Singh, P. K., & Shrivastava, N. (2019). Enzymes in the animal feed industry. In Enzymes in Food Biotechnology (pp. 93-109): Elsevier.

Patel, A. K., Ahire, J. J., Pawar, S. P., Chaudhari, B. L., & Chincholkar, S. B. (2009). Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Research International, 42(4), 505-510.

Ravindran, V. (2013). Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research, 22(3), 628-636.

Santos, R. A., Oliva-Teles, A., Pousão-Ferreira, P., Jerusik, R., Saavedra, M. J., Enes, P., & Serra, C. R. (2021). Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases. Marine Biotechnology, 23(2), 276-293.

Singh, S., Moholkar, V. S., & Goyal, A. (2013).Isolation, identification, and characterization of a cellulolytic Bacillus amyloliquefaciens strain SS35 from rhinoceros dung. International Scholarly Research Notices, 2013.

Su, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories, 19(1), 1-12.

Ugwuanyi, J. (2016). Enzymes for nutritional enrichment of agro-residues as livestock feed. In Agro-Industrial Wastes as Feedstock for Enzyme Production (pp. 233-260): Elsevier.

van Dijl, J., & Hecker, M. (2013).Bacillus subtilis: from soil bacterium to super-secreting cell factory. 12, 3. https://doi.org/10.1186/1475-2859-12-3.

Wang, Y., & McAllister, T. (2002). Rumen microbes, enzymes and feed digestion-a review. Asian-Australasian Journal of Animal Sciences, 15(11), 1659-1676.

Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1694(1-3), 299-310.

Yoon, J.-H., Kim, I.-G., Kang, K. H., Oh, T.-K., & Park, Y.-H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from seawater of a tidal flat of the Yellow Sea in Korea. Journal of Medical Microbiology, 53(5), 1297-1303.

Yu, P., Yu, S., Wang, J., Guo, H., Zhang, Y., Liao, X., & Xue, L. (2019). Bacillus cereus isolated from vegetables in China: incidence, genetic diversity, virulence genes, and antimicrobial resistance. Frontiers in microbiology, 10, 948.

Downloads

Published

2023-01-04