Chitosan-Sodium Caseinate Composite Films with Pandan Leaf Extract for Lipid Oxidation Retardation in Fried Foods during Storage

Authors

  • Nattiga Silalai ภาคเทคโนโลยีการอาหาร คณะวิทยาศาสตร์ มหาวิทยาลัยสยาม
  • Tunyaporn Sirilert ภาคเทคโนโลยีการอาหาร คณะวิทยาศาสตร์ มหาวิทยาลัยสยาม
  • Sukanya Sanjai
  • Wirada Kidhen

Abstract

                The objective of this research was to develop food wrap films for retardation of lipid oxidation by varying pandan leaves extract concentrations (5, 10 and 15%). The result indicated that pandan leaves extract concentrations at 15% and the suitable ratio of chitosan to casein for film formation was 80:20 with varying 1% and 2% glycerol as a plasticizer. Thickness of the films with 1% and 2% glycerol ranged from 0.098 to 0.198 cm. Its water vapor transmission rate, tensile strength and elongation was 100.48 ± 2.17 g/m2•24 hr, 0.41±0.03 N and 69.3%, respectively. Grease and oil resistance of all films were more than 30 days. The films, stored at 30, 40 and 50°C, were used to investigate antioxidant capacity and total phenolic compounds. It found that degradation rate of antioxidant capacity decreased slightly in accordance with increasing total phenolic compounds of the films during storage. Degradation rate of antioxidant capacity of the films containing 5, 10 and 15% (w/w) pandan leaf extract during storage at 30°C was 2.1813, 1.4471 and 0.8768, respectively. However, the antioxidant capacity of all biopolymer films containing the pandan extract decreased dramatically with increasing temperature. Keywords : Pandan leave, Biopolymer film, Lipid oxidation, Antioxidant capacity, Food packaging 

Author Biographies

Nattiga Silalai, ภาคเทคโนโลยีการอาหาร คณะวิทยาศาสตร์ มหาวิทยาลัยสยาม

Physico-chemical properties of food materials - Powder encapsulation and antioxidation     

Tunyaporn Sirilert, ภาคเทคโนโลยีการอาหาร คณะวิทยาศาสตร์ มหาวิทยาลัยสยาม

Product development, Fishery products

References

Aghazadeh, N., Esmaiili, M., Mohtarami, F. (2021). Prediction of equilibrium moisture contents of black grape seeds (Siah Sardasht cultivar) at various temperatures and relative humidity: Shelf-life criteria. Nutrition and Food Sciences Research, 8(1), 45-52.

Aini, R., Mardiyaningsih, A. (2016). Pandan leaves extract (Pandanus amaryllifolius Roxb) as a food preservative. Indonesian Journal of Medicine and Health, 7(4), 166-173.

Akter, N., Khan, R.A., Tuhin, M.O., Haque, M.E., Nurnabi, M., Parvin, F., Islam, R. (2012). Thermomechanical, barrier, and morphological properties of chitosan-reinforced starch-based biodegradable composite films. Journal of Thermoplastic Composite Materials, 27(7), 1-16.

Arvanitoyannis, I., Psomiadou, E., Nakayama, A. (1996). Edible films made from sodium casemate, starches, sugars or glycerol. Part 1. Carbohydrate Polymer, 31(4), 179-192.
Arvanitoyannis, I., Biliaderis, C. (1998). Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry, 62(3), 333-342.

Arvanitoyannis, I., Nakayama, A., Aiba, S. (1998). Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydrate Polymer, 37(4), 371-382.

Audic, J., Chaufer, B. (2005). Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. European Polymer Journal, 41(8), 1934-1942.

Avena-bustillos, R.J., Krochta, J.M. (1993). Water vapor permeability of caseinate-based edible films as affected by pH, calcium crosslinking and lipid content. Journal of Food Science, 58(4), 904-907.

Barreto, P.L.M., Pires, A.T.N., Soldi, V. (2003). Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polymer Degradation and Stability, 79(1), 147-152.

Cervera MM, Heinämäki J, Krogars K, Jörgensen AC, Karjalainen M, Colarte AI, Yliruusi J. Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols. Journal of the American Association of Pharmaceutical Scientists, 5(1), 1-6.

Chambi, H., Grosso, C. (2006). Edible Films Produced with Gelatin and Casein Cross-linked with Transglutaminase. Food Research International, 39(4), 458-466.

Conca, K. R.; Yang, T. C. S. (1993). Edible food barrier coatings. In C.C. Ching, D.L. Kaplan, & E.L. Thomas. (Eds.) Biodegradable Polymers and Packaging. (pp. 357-369). Lancaster, PA: Technomic Publishing.

Diniz, J.M.B.F., Gil, M.H., Castro, J.A.A.M. (2004). Hornification - its origin and interpretation in wood pulps. Wood Science and Technology, 37(6), 489-494.

Funke, U., Bergthaller, W., Lindhauer, M.G. (1998). Processing and characterization of biodegradable products based on starch. Polymer Degradation and Stability, 59(1-3), 293-296.

Galus, S., Kadziñska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science and Technology, 45(2), 273-283.

Gontard, N., Guilbert, S., Cuq, J. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206-211.

Hoac, T., Daun, C., Trafikowska, U., Zackrisson, J., Akesson, B. (2006). Influence of heat treatment on lipid oxidation and glutathione peroxidase activity in chicken and duck meat. Innovative Food Science and Emerging Technology, 7(1), 88-93.

Johan, A.B., Ratnawati, D., Purnomo, S. (2020). Constructive learning through experiments utilization of pandan leaf fiber as a strengthening of composite material. Journal of Physics: Conference Series 1456(1), 1-8.

Khwaldia, K., Banon, S., Perez, C., Desobry, S. (2004). Properties of sodium caseinate film-forming dispersions and films. Journal of Dairy Science, 87(7), 2011-2016.

Kim, J.M., Kang, J.Y., Park, S.K., Han, H.J., Lee, K., Kim, A., Kim, J.C., Choi, S., Heo, H.J. (2020). Effect of storage temperature on the antioxidant activity and catechins stability of Matcha (Camellia sinensis). Food Science and Biotechnology, 29(9), 1261-1271.

Lacroix, M., Le, T.C., Ouattara, B., Yu, H., Letendre, M., Sabato, S.F., Mateescu, M.A., Patterson, G. (2002). Use of gramma radiation to produce film from whey, casein, and soya proteins: Structure and functional characteristics. Radiation Physics and Chemistry, 63, 827-832.

Lazaridou, A., Biliaderis, C.G. (2002). Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydrate Polymer, 48(2), 179-190.

Lieberman, E.R., Gilbert, S.G. (1973). Gas permeability of collagen films as affected by cross-linkage, moisture, and plasticizer content. Journal of Polymer Science: Polymer Symposia, 41(1), 33-43.

Liu, F., Chiou, B., Avena-Bustillos, R.J., Zhang, Y., Li, Y., McHugh, T.H., Zhong, F. (2017). Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids, 65, 1-9.

Longares, A., Monahan, F.J., O’Riordan, E.D., O’Sullivan, M. (2005). Physical properties of edible films made from mixtures of sodium caseinate and WPI. International Dairy Journal, 15(12), 1255-1260.

López-Caballero, M.E., Gómez-Guillén, M.C., Pérez-Mateos, M., Montero, P. (2005). A chitosan-gelatin blend as a coating for fish patties. Food Hydrocolloids, 19(2), 303-311.

Mohd Nor, F., Mohamed, S., Ainildris, N., Ismail, A. (2008). Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep-frying studies. Food Chemistry, 110(2), 319 - 327.

Pereda, M., Aranguren, M.I., Marcovich, N.E. (2008). Characterization of chitosan/caseinate films. Journal of Applied Polymer Science, 107(2), 1080-1090.

Peungvicha, P., Temsiririrkkul, R., Prasain, J.K., Tezuka, Y., Kadota, S., Thirawarapan, S.S., Watanabe, H. (1998). 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. Journal of Ethnopharmacology, 62(1), 79-84.

Phadungath, C. (2005). Casein micelle structure: A concise review. Songklanakarin Journal of Science and Technology, 27(1), 201-212.

Réblová, Z. (2006). The effect of temperature on the antioxidant activity of tocopherols. European Journal of Lipid Science and Technology, 108(10), 858-863.

Rhim, J.W., Ng, P.K.W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433.

Roldan, M., Antequera, T., Armenteros, M., Ruiz, J. (2014). Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins. Food Chemistry, 149, 129-136.

Rubilar, J.F., Cruz, R.M.S., Silva, H.D., Vicente, A.A., Khmelinskii, I., Vieira, M.C. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115(4), 466-474.

Saheb, D.N., Jog, J.P. (1999). Natural fibre polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363.

Schou, M., Longares, A., Montesinos-Herrero, C., Monahan, F.J., O’Riordan, D., O’Sullivan, M. (2005). Properties of edible sodium caseinate films and their application as food wrapping. LWT-Food Science and Technology, 38(6), 605-610.

Shahidi, F., Arachchi, J.K.V., Jeon, Y.J. (1999). Food applications of chitin and chitosans. Trends in Food Science and Technology, 10, 37-51.

Sirilert, T., Kitthaisong, W. (2010). Development of chitosan film laminated with paper material for food packaging forming. Journal of Food Technology, Siam University, 6(1), 55-63.

Teli, M.D., Jadhav, A.C. (2015). Mechanical extraction and physical characterization of pandanus odorifer lignocellulosic fibre. International Journal of Science and Research, 6(1), 1370-1374.

Xu, Y.X., Kim, K.M., Hanna, M.A., Nag, D. (2005). Chitosan-starch composite film: Preparation and characterization. Industrial Crops and Products, 21(2), 185-192.

Zhai, M., Zhao, L., Yoshii, F., Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymer, 57(1), 83-88.

Downloads

Published

2023-01-04