Metal Ion Control the Selective Sensing of Oxalate Anion by Dinuclear Complexes under Indicator Displacement Strategy

Authors

  • Nattawat Chatphueak
  • Sarayut Watchasit
  • Chomchai Suksai ภาควิชาเคมี คณะวิทยาศาสตร์ ม.บูรพา

Abstract

Two dinuclear complexes of Cu(II) and Zn(II) with bis(dipicolylamine) linked by a para-xylylene bridge, CuL1 and ZnL1 have been synthesized and characterized. Both compounds are applied as metal-based indicator displacement assay (IDA) receptors for anions using bromopyrogallol red (BPG) as sensing indicators in 80/20 (%v/v) acetronitrile/water solution buffered with 10 mM HEPES at pH 7.0. After addition of various anions to the solution of [CuL1•BPG] and [ZnL1•BPG] ensemble, the results showed that only [CuL1•BPG] could discriminate oxalate from other anions obviously resulting in the color change from blue-violet of ensemble to magenta color of free BPG. This result indicates that the nature of metal ion plays a crucial role to control the selective sensing of oxalate in this work. The quantitative detection of oxalate by [CuL1•BPG] ensemble was ranged from 20 – 50 µM, and a correlation coefficient (R2) = 0.995. The detection limit was 20 µM by the naked eye. Keywords :  dinuclear complex ; indicator displacement assay ; oxalate ; naked eye ; ensemble

Author Biography

Chomchai Suksai, ภาควิชาเคมี คณะวิทยาศาสตร์ ม.บูรพา

  

References

Binstead, R. A., Jung, B. & Zuberbühler, A. D. (2000). SPECFIT/32 Global analysis System, 3.0, Spectrum Software Associates, Marlborough, MA.

Cartery, C., Faguer, S., Karras, A., Cointault, O., Buscail, L. & Modesto, A. (2011). Oxalate nephropathy associated with chronic pancreatitis. Clinical Journal of the American Society of Nephrology, 6, 1895-1902.

Curiel, D., Más-Montoya, M. & Sánchez, G. (2015). Complexation and sensing of dicarboxylate anions and dicarboxylic acids, Coordination Chemistry Reviews, 284, 19-66.

Dey, N., Kumari, N., Bhagat, D., & Bhattacharya, S. (2018). Smart optical probe for ‘equipment-free’ detection of oxalate in biological fluids and plant-derived food items. Tetrahedron, 74, 4457-4465.

Gampp, H., Maeder, M., Meyer, C. J. & Zuberbuhler, A.D. (1986). Calculation of equilibrium constants from multiwavelength spectroscopic data—IV: Model-free least-squares refinement by use of evolving factor analysis. Talanta, 33, 943-951.

Gampp, H., Maeder, M., Meyer, C. J. & Zuberbuhler, A. D. (1985). Calculation of equilibrium constants from multiwavelength spectroscopic data—III: Model-free analysis of spectrophotometric and ESR titrations. Talanta, 32, 1133-1139.

Hönow, R., Simon, S. & Hesse, S. (2002). Interference-free sample preparation for the determination of plasma oxalate analyzed by HPLC-ER: preliminary results from calcium oxalate stone-formers and non-stone-formers. Clinica Chimica Acta, 318, 19-24.

Hu, M. & Feng, G. (2012). Highly selective and sensitive fluorescent sensing of oxalate in water. Chemical Communications, 48, 6951-6953.

Inoue, K., Aikawa, S. & Fukushima, Y. (2018). Colorimetric detection of oxalate in aqueous solution by a pyrogallol red-based Cu2+ complex. Luminescence, 33, 277-281.

Kalra, V. & Pundir, C. S. (2004). Quantification of urinary oxalate by immobilized oxalate oxidase of forage sorghum leaf. Indian Journal of Biotechnology, 3, 52-57.

Kasidas, G. P., & Rose, G. A. (1986). Measurement of plasma oxalate in healthy subjects and in patients with chronic renal failure using immobilised oxalate oxidase, Clinica Chimica Acta, 154, 49-58.

Lavigne, J. J. & Anslyn, E. V. (1999). Teaching old indicators new tricks: A colorimetric chemosensing ensemble for tartrate/malate in beverages. Angewandte Chemie International Edition, 38, 3666-3669.

Li, H., Chai, X., Chai, S. S., DeMartini, N., Zhan, H., & Fu, S. Determination of oxalate in black liquor by headspace gas chromatography. Journal of Chromatography A, 1192, 208-211.

Marengo, S. R. & Romani, A. M. P. (2008). Oxalate in renal stone disease: the terminal metabolite that just won't go away. Nature Clinical Practice Nephrology, 4, 368-377.

Merusi, C., Corradini, C., Cavazza, A., Borromei, C., & Salvadeo, P. (2010). Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal, Food Chemistry, 120, 615-620.

Muñoz, J. A., & Lopez-Mesas, M. (2010). Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis. Talanta, 81, 392-397.

Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250, 3118-3127.

Noblitt, S. D., Schwandner, F. M., Hering, S. V., Collett, J. L., & Henry, C. S. (2009). Determination of fecal sterols by gas chromatography–mass spectrometry with solid-phase extraction and injection-port derivatization. Journal of Chromatography A, 1216, 1503-1058.

Ogawa, Y., Miyazato, T., & Hatano, T. (2000). Oxalate and urinary stones. World Journal of Surgery, 24, 1154-1159.

Pundir, C. S., Thakur, M. & Satypal, P. (1998). Determination of urinary oxalate with Cl- and NO3- insensitive oxalate oxidase purified from sorghum leaf. Clinical Chemistry, 44, 1364-1365.

Pundir, C. S, Kuchhal, N. K., Thakur, M. & Satypal, P. (1998). Determination of plasma oxalate with chloride ion insensitive oxalate oxidase. Indian Journal of Biochemistry and Biophysics, 35, 120-122.

Rhaman, M., Fronczek, F. R., Powell, D. R. & Hossain, A. (2014). Colourimetric and fluorescent detection of oxalate in water by a new macrocycle-based dinuclear nickel complex: a remarkable red shift of the fluorescence band. Dalton Transactions, 43, 4618-4621.

Rodriguez, J. A., Hernandez, P., Salazar, V., Castrillejo, Y.& Barrado, E. (2012). Amperometric biosensor for oxalate determination in urine using sequential injection analysis. Molecules, 17, 8859-8871.

Su, J., Sun, Y.Q., Huo, F.J., Yanga, Y. T. & Yin, C. X. (2010). Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet. Analyst, 135, 2918-2923.

Suksai, C. & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32, 192-202.

Tang, L.-J. & Liu, M.-H. (2010). A new chemosensing ensemble for colorimetric detection of oxalate in water. Bulletin of the Korean Chemical Society, 31, 3159-3162.

Tang, L., Wu, D., Wen, X., Dai, X. & Zhong, K. (2014). A novel carbazole-based ratiometric fluorescent sensor for Zn2+ recognition through excimer formation and application of the resultant complex for colorimetric recognition of oxalate through IDAs. Tetrahedron, 70, 9118-9124.

Watchasit, S., Suktanarak, P., Suksai, C., Ruangpornvisuti, V. & Tuntulani, T. (2014). Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(ii) complex under an indicator displacement assay approach. Dalton Transactions, 43, 1470-14709.

Watchasit, S., Kaowliew, A., Suksai, C., Tuntulani, T., Ngeontae, W. & Pakawatchai, C. (2010). Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Letters, 51, 3398-3402.

Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J. & Anslyn, E. V. (2001). Teaching old indicators new tricks. Accounts of Chemical Research, 34, 963-972.

Worramongkona, P., Seeda, K., Phansomboon, P., Ratnarathorn, N., Chailapakul, O. & Dungchai, W. (2018). A simple paper-based colorimetric device for rapid and sensitive urinary oxalate determinations. Analytical Science, 34, 103-108.

Downloads

Published

2021-01-06