A Geometrial Approach to the Diophantine Equation x_1^2+x_2^2+...+x_n^2=u^2

Authors

  • Ratchanikorn Chonchaiya King Mongkut's University of Technology Thonburi
  • Warin Vipismakul Burapha University
  • Arisa Jiratampradab Kasetsart University

Abstract

We find all Diophantine solutions for the equation  by refining the geometrical approach from (Ayoub, 1984) to find solutions of the equation  We can find all rational points on the unit n-sphere by lines connecting those rational points to the point  Such linear parametric equations will always have rational slopes.    Keywords :  Diophantine solutions ; Pythagorean triples ; unitsphere 

References

Ayoub, A. B. (1984). Integral Solutions to the Equation Mathematics Magazine, 57(4),
222-223.

Catalan, E. (1885). Bull. Acad. Roy. Belgique, 9(3), 531.

Cossali, P. (1797). Origine. Transporto in Italia. Algebra., 1, 97.

Dainelli, U. (1877). Giornale di Mat., 15, 378.

Gill, C. (1826). The Gentleman's Math. Companion, 29(5), 364.

Dickson, L. E. (1966). History of the Theory of Numbers (Vol. 2), Chelsea Publishing.

Euler, J. A. (1779). Acta Acad. Petrop., 3, 40.

Huerlimann, W. (2002). The Primitive Cuboids with Natural Edges and Diagonals According to Catalan and
Sierpinski. Mathematics Preprint Archive, 2002 (2), 444-452. (SSRN: https://ssrn.com/abstract=3133707)

Huerlimann, W. (2015). Hopf's quadratic map and permutation invariant properties of primitive cuboids,
Algebra Lett., 2015, Article ID 2.

Lebesgue, V. A. (1874). Nouv. Ann. Math., 13(2), 64.

Mikami, Y. (1912). Abh. Geschichte Math. Wiss., 30, 233.

Downloads

Published

2021-09-06