Study the Optical Properties of GQDs/AgNPs Nanosensor for Paraquat Detection

Authors

  • Chanunporn Insombat
  • Wanwisa Janrungroatsakul ภาควิชาเคมี คณะวิทยาศาสตร์ ม.นเรศวร

Abstract

In this work, GQDs/AgNPs nanosensor was prepared by reducing silver nitrate with sodium borohydride in the presence of graphene quantum dots (GQDs) solution. Optical properties of the prepared GQDs/AgNPs were studied by using UV-Vis spectroscopy and the GQDs/AgNPs were yellow in color due to strong surface plasmon resonance absorption band at 393 nm. The resulting decrease in absorption at 393 nm depended directly on increasing concentration of paraquat concomitant in the change of color of GQDs/AgNPs dispersion from yellow to orange. The linear concentration range of paraquat was 1 – 30 ppm with limit of detection of 0.4 ppm. Keywords : GQDs/AgNPs nanosensor ; optical properties ; surface plasmon resonance ; paraquat

References

Alizadeh, A., Khodaei, M. M., Karami, C., Workentin, M. S., Shamsipur, M., and Sadeghi, M. (2010). Rapid and selective lead (II) colorimetric sensor based on azacrownether-functionalized gold nanoparticles. Nanotechnology, 21(31), 315503.

Aramendía, M. A., Borau, V., Lafont, F., Marinas, A., Marinas, J. M., Moreno, J. M., Porras, J. M., and Urbano, F. J. (2006). Determination of diquat and paraquat in olive oil by ion-pair liquid chromatography-electrospray ionization mass spectrometry (MRM). Food Chemistry, 97, 181–188.

Bhattacharya, K., Mukherjee, S. P., Gallud, A., Burkert, S. C., Bistarelli, S., Bellucci, S., Bottini, M., Star, A., and Fadeel, B. (2016). Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 333–351.

Du, J. J., Jiang, L., Shao, Q., Liu, X. G., Marks, R. S., Ma, J., and Chen, X. D. (2013). Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small, 9 1467-1481.

El Harmoudi, H., Achak, M., Farahi, A., Lahrich, S., El Gaini, L., Abdennouri, M., Bouzidi, A., Bakasse, M., and El Mhammedi, M. A. (2013). Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode. Talanta, 115, 172–177.

Gao, L. N., Liu, J. T. Wang, C. Y. Liu, G. J. Niu, X. D. Shu, C. X., and Zhu, J. (2014). Fast determination of paraquat in plasma and urine samples by solid-phase micro-extraction and gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 944, 136–140.

Geng, P. W., Cai, J. Z., Zhang, L. J., Xu, M. Z., Liu, Z. Z., Zhang, J., Wang, Z. Y., Wang, X. Q., Wen, C. C., and Ma, J. S. (2017). Liver tissue metabonomics in rat after acute paraquat poisoning gas chromatography-mass spectrometry. International Journal of Clinical and Experimental Medicine, 10, 937–943.

Hallaj, T., Amjadi, M., Manzoori, J. L., and Shokri, R. (2015). Chemiluminescence reaction of glucose-derivied grapheme quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchimica Acta, 182, 789–796.

Jin, W., Huang, P., Wu, F., and Ma, L.-H. (2015). Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications. Analyst, 140,
3507–3513.

Kiatkumjorn, T., Rattanarat, P., Siangproh, W., Chailapakul, O., and Praphairaksit, N. (2014). Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel. Talanta, 128, 215–220.

Shen, L., Chen, M., Hu, L., Chen, X., and Wang, J. (2013). Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir, 29, 16135–16140.

Siangproh, W., Somboonsuk, T., Chailapakul, O., and Songsrirote, K. (2017). Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta, 174, 448–453.

Tharmaraj, V., and Yang, J. (2014). Sensitive and selective colorimetric detection of Cu2+in aqueous medium via aggregation of thiomalic acid functionalized Ag nanoparticles. Analyst, 139, 6304–6309.

The United States Department of Agriculture (USDA). (2005). The pesticide data program annual summary calendar year 2005. Washington, DC.

Walcarius, A., and Lamberts, L. (1996). Square wave voltammetric determination of paraquat and diquat in aqueous solution. Journal of Electroanalytical Chemistry, 406, 59–68.

Wang, B., Zhuo, S., Chen, L., and Zhang, Y. (2014). Fluorescent grapheme dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 384–387.

Yang, Z., Li, Z., Xu, M., Ma, Y., Zhang, J., Su, Y., Gao, F., Wei, H., and Zhang, L. (2013). Controllable synthesis of fluorescent carbon and their detection application as nanoprobes. Nano-Micro Letters, 5(4), 247–259.

Ye, X., Gu, Y., and Wang, C. (2012). Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sensors and Actuators B: Chemical, 173, 530–539.

Zhang, Q. -L., Wang, C. -M., Zhu, L. -L., Huang, J. -L., Wu, D., Zhang, M. -M., and Lu, H. -F. (2018). Colorimetric and fluorescent dual-mode sensing of alkaline phosphatase activity in L-02 cells and its application in living cell imaging based on in-situ growth of silver nanoparticles on graphene quantum dots. Sensors and Actuators B: Chemical, 258, 461-469.

Zou, T., He, P., Cao, J., and Li, Z. (2015). Determination of paraquat in vegetables using HPLC-MSMS. Journal of Chromatographic Science, 53, 204–209.

Downloads

Published

2021-01-05