The Coenzyme Q10 Production from Rhodopseudomonas sp. S12-13 Mutant

Authors

  • Somchai Krairak ภาควิชาชีววิทยา คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
  • Nisa Krairak ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ ม.บูรพา

Abstract

Rhodopseudomonas sp. S12-13 was retrieved from the mutation of the wild type, Rhodopseudomonas S12, by UV-irradiation. The mutant, S12-13 contained the cassava starch digestibility resulting in the high amount of coenzyme Q10 production at 148.12±21.74 µg/L when cultivating in AM medium containing of 2% cassava starch and 1% glutamate as carbon and nitrogen sources, respectively. In case of wild type, S12, the coenzyme Q10 production was only 12.51±1.34 µg/L when cultivating in AM medium. Mutant S12-13 produced maximal coenzyme Q10 (186.91±28.97 µg/L), when it was cultivated in the rectangle bottle, that contained 200 cm2 of light exposure surface area. For the cultivation in cylindrical bottle, which contained 143 cm2 of light exposure surface area, one would produce 151.70±21.64 µg/L of coenzyme Q10. Keywords :  cassava starch digestion ; coenzyme Q10 ; Rhodopseudomonas sp.

References

Carr, N. G., & Exell, G. (1965). Ubiquinone concentrations in Athiorhodaceae grown under various environmental conditions. Biochemical Journal, 96, 688-692.

Cluis, C. P., Burja, A. M., & Martin, V. J. J. (2007). Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnology, 25, 514-521.

Ehud, I., & Doron, E. (1988). Total synthesis of polyprenoid natural products via Pd (O)-catalyzed oligomerizations. Pure and Applied Chemistry, 60, 89–98.

Fuller, B., Smith, D., Howerton, A., & Kern, D. (2006). Anti-inflammatory effects of CoQ10 and colorless carotenoids. Journal of Cosmetic Dermatology, 5, 30-38.

Jeong, S. K., van Dao, T., Kien, N., & Kim, J. K. (2008). Effect of pH and light irradiation on coenzyme Q10 production using Rhodobacter sphaeroides. Journal of Fish Science and Technology, 11(4), 219-223.

Jeya, M., Moon, H. J., Lee, J. L., Kim, I. W., & Lee, J. K. (2010). Current state of coenzyme Q10 production and its applications. Applied Microbiology and Biotechnology, 85, 1653-1663.

Jiang, S. Y., & Yu L. J. (2007). The pathway for CoQ biosynthesis in microorganisms and the recent progress in the genetic improvement of microbial strains for CoQ10 production with the aid of molecular biological methods. China Biotechnology, 27, 103-112.

Kim, S. J., Kim, M. D., Choi, J. H., Kim, S. Y., Ryu, Y. W., & Seo, J. H. (2006). Amplification of 1-deoxy-d-xylulose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 72, 982-985.

Kuo, F. S., Chien, Y. H., & Chen, C. J. (2012). Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresource Technology, 113, 315–318.

Laplante, S., Souchet, N., & Bryl, P. (2009). Comparison of low temperature processes for oil and coenzyme Q10 extraction from mackerel and herring. European Journal of Lipid Science and Technology, 111(2),
135–141.

Lu, W., Shi Y., He, S., Fei, Y., Yu, K., & Yu, H. (2013). Enhanced production of CoQ10 by constitutive overexpression of 3-demethyl ubiquinone-9 3-methyltransferase under tac promoter in Rhodobacter sphaeroides. Biochemical Engineering Journal, 72, 42–47.

Manjeen, N., Phunpruch, S., & Krairak, S. (2012). Hydrogen production by photosynthetic bacteria strain OS33 using domestic waste as carbon source. pp. 206-210. In The 23rd Annual Meeting of the Thai Society for Biotechnology, 1-2 February 2012, The Imperial Queen’s Park Hotel, Bangkok.

Margaritis, A., & Vogrinetz, J. (1983). The effect of glucose concentration and pH on hydrogen production by Rhodopseudomonas sphaeroides VM 81. International Journal of Hydrogen Energy, 8(4), 281-284.

Matsumura, M., Kobayashi, T., & Aiba, S. (1983). Anaerobic production of ubiquinone-10 by Paracoccus dentrificans. European Journal of Applied Microbiology and Biotechnology, 17(2), 85-89.

Miyamoto, S., Kawai, A., Higuchi, S., Nishi, Y., Tanimoto, T., Uekaji, Y., Nakata, D., Fukumi, H., & Terao, K. (2009). Structural studies of coenzyme Q10 inclusion complex with -cyclodextrin using chemical analyses and molecular modeling. Chem-Bio Informatics Journal, 9, 1-11.

Ndikubwimana, J. D., & Lee, B. H. (2014). Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnology Letter, 36(10), 1917–1926.

Okada, K., Kainou, T., Tanaka, K., Nakagawa, T., Matsuda, H., & Kawamukai, M. (1998). Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. European Journal of Biochemistry, 255, 52-59.


Park, Y. C., Kim, S. J., Choi, J. H., Lee, W. H., Park, K. M., Kawamukai, M., Ryu, Y. W., & Seo, J. H. (2005). Batch and fed-batch production of coenzyme Q(10) in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Applied Microbiology and Biotechnology, 67(2), 192–196.

Pfennig, N. (1969). Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. Journal of Bacteriology, 99, 597–602.

Stocker, R., Bowry, V. W., & Frei, B. (1991). Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does  -tocopherol. Proceedings of the National Academy of Sciences of the United States of America, 88, 1646 –1650.

Tian, Y., Yue, T., Yuan, Y., Soma, P. K., Williams, P. D., Machado, P. A., Fu, H., Kratochvil, R. J., Wei, C. I., & Lo, Y. M. (2010). Tobacco biomass hydrolysate enhances coenzyme Q10 production using photosynthetic Rhodospirillum rubrum. Bioresource Technology, 101, 7877-7881.

Thomas, S. R., Leichtweis, S. B., Pettersson, K., Croft, K. D., Mori, T. A., Brown, A. J., & Stocker, R. (2001). Dietary co-supplementation with vitamin E and coenzyme Q10 inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 585-593.

Yoshida, H., Kotani, Y., Ochiai, K., & Araki, K. (1998). Production of ubiquinone-10 using bacteria. The Journal of General and Applied Microbiology, 44, 19-26.

Yuting, T., Tianli, Y., Jinjin, P., Yahong, Y., Juhai, L., & Martin, L. Y. (2010). Effects of cell lysis treatments on the yield of coenzyme Q10 following Agrobacterium tumefaciens fermentation. Food Science and Technology International, 16, 195–203.

Zhou, Q., Zhang, P., & Zhang, G. (2014). Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effect of light intensity. Bioresource Technology, 171, 330–335.

Downloads

Published

2021-01-04