Growth and Fatty Acid Composition of Microalgae Selenastrum bibraianum BPR1107 Isolated from Bangpra Reservoir, Chonburi Province, under Laboratory and Outdoor Condition Cultivation
Abstract
Microalgae were isolated from the Bangphra reservoir, Chonburi Province by the micro-manipulative method and cultured in BG11 culture medium under laboratory conditions at 26+2 °C under the light intensity approximately 60 mmols-1m-2, light and dark period of 16:8 hours. After isolation and morphology identification, the green microalgae Selenastrum bibraianum BPR1107 with curve and sharp shape, colony form 4-6 cells and cell size of 5-20 microns, was selected. Batch culture of S. bibraianum BPR1107 in 2 L bottle provided the maximum cell density and maximum biomass (days 11) of 1,014.11+343.19 x104 cells/ml and 0.61+0.05 g/L, respectively. The specific growth rate of 0.98+0.10 per day or doubling time 0.72+0.07 day. The total lipid of 23.15+0.41% and found maximum fatty acid content was palmitic acid (76.73%). Batch culture of S. bibraianum BPR1107 in raceway pond provided the maximum cell density and maximum biomass (days 6) of 413.17+98.60 x104 cells/ml and 0.11+0.01 g/L, respectively. The specific growth rate of 0.74+0.11 per day or doubling time 0.95+0.13 day. The total lipid of 20.51+0.32% and found maximum fatty acid content was palmitic acid (60.89%). The analysis of the fatty acid profile of S. bibraianum BPR1107 showed that similar to palm oil. Therefore, microalgae S. bibraianum BPR1107 was feasible as feedstock for biodiesel production. The present study indicated that S. bibraianum BPR1107, was one alternative as a source for biodiesel production. Keywords : microalgae ; Selenastrum ; isolate ; growth ; lipid ; Bangpra ReserviorReferences
Anderson, R. A. & Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Anderson. (ed.),
Algal Culturing Techniques. (pp. 83-100). London: Elsevier Academic Press.
Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, C. & Perales, J. A. (2014). Lipid
production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Appl. Biochem. Biotechnol., 174, 1471-1483.
Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. J. Biochem. Physiol,
37, 911-917.
Brennan, L. & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production,
processing and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
Borowitzka, M. A. (1992). Algal biotechnology products and processes-matching science and economics.
J. Appl. Phycol., 4, 267-279.
Chakravarty, S. & Mallick, N. (2019). Optimization of lipid accumulation in an aboriginal green microalga
Selenastrum sp. GA66 for biodiesel production. Biomass and Bioenergy, 126, 1-13.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology, 25, 294-306.
Doan, T. T. Y., Sivaloganathan, B. & Obbard, J. P. (2011). Screening of marine microalgae for biodiesel
Feedstock. Biomass and Bioenergy, 35, 2534-2544.
El-Sheekh, M. M. & Hamouda, R. A. (2016). Lipids extraction from the green alga Ankistrodesmus falcatus
using different methods. Rend. Fis. Acc. Lincei., 27, 589-595.
Feng, P., Deng, Z., Hua, Z., & Fan, L. (2012). Lipid accumulation and growth characteristics of Chlorella
zofingiensis under different nitrate and phosphate concentrations. J. Biosci. Bioeng., 114, 405-410.
George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T. & Mishra, S. (2014). Effects of different
media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374.
Griffiths, M. J. & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal
species for biodiesel production. J. Appl. Phycol., 21, 493-507.
Guillard, R. R. L. (1995). Culture methods. In G. M. Hallegraeff, D. M. Anderson and A. D. Cembella. (eds.),
Manual on Harmful Marine Microalgae, IOC Manuals and Guides No.33. (pp.45-62). Paris: UNESCO.
Guillard, R. R. L. (2005). Purification methods for microalgae. In R. A. Anderson. (ed.), Algal Culturing
Techniques. (pp. 117-132). London: Elsevier Academic Press.
Halim, R., Danquah, M.K. & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production:
A review. Biotechnology Advances, 30, 709-732.
He, Q., Yang, H. & Hu, C. (2015). Optimizing light regimes on growth and lipid accumulation in
Ankistrodesmus fusiformis H1 for biodiesel production. Bioresource Technology, 198, 876-883.
Hoshow, R. W. & Rosowski, J. R. (1973). Method of microscopic algae, pp. 53-68, In Stein, J. R. (ed.), Hand
book of phycological methods culture methods and growth measurements. Cambridge: Cambridge University Press.
Jayanta, T., Chandra, K. M. & Chandra, G. B. (2012). Growth, total lipid content and fatty acid profile of a
native strain of the freshwater oleaginous microalgae Ankistrodesmus falcatus (Ralf) grown under salt stress condition. International Research Journal of Biological Sciences, 1(8), 27-35.
Jeong, H., Lee, J. & Cha, M. (2013). Energy efficient growth control of microalgae using photobiological
methods. Renew. Energy, 54, 161-165.
Kilham, S. S., Kreeger, D. A., Goulden, C. E. & Lynn, S. G. (1997). Effect of nutrient limitation on biochemical
constituents of Ankistrodesmus falcatus. Freshwater Biology, 38, 591-596.
Kudahettige, N. P., Pickova, J. & Gentili, F. G. (2018). Stressing Algae for Biofuel Production: Biomass and
Biochemical Composition of Scenedesmus dimorphus and Selenastrum minutum Grown in Municipal Untreated Wastewater. Frontiers in Energy Research, 6(132), 1-10.
Lamaisri, C., Punsuvon, V., Chanprame, S., Arunyanark, A., Srinives, P. & Liangsakul, P. (2015). Relationship
between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin J. Sci. Technol., 37(4), 389-395.
Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y. & Oh, H.-M. (2010). Comparison of several methods for effective
lipid extraction from microalgae. Bioresource Technology, 101, S75–S77.
Lepage, G. & Roy, C. C. (1986). Direct Transesterification of All Classes of Lipids in a One-Step Reaction.
Journal of Lipid Research, 27(1), 114-120.
Marika, T., Anne, N., Kalle, V., Anne, O., Silja, Kostia. Martin, R. (2017). Culturing of Selenastrum on diluted
composting fluids; conversion of waste to valuable algal biomass in presence of bacteria. Bioresour. Technol, 238, 205-213.
Mori, C. C., Bagatini, I. L., da Silva, T. G., Parrish, C. C. & Vieira, A. A. H. (2018). Use of fatty acids in the
chemotaxonomy of the family Selenastraceae (Sphaeropleales, Chlorophyceae) Phytochemistry, 151,
9-16.
Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D. Pereira, S. A., Druzian, J. I., Souza, C. O., Vich, D. V.,
Carvalho, G. C. & Nascimento, M. A. (2013). Screening Microalgae Strains for Biodiesel Production:
Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria.
Bioenerg. Res., 6, 1-13.
Ouyang, Y., Zhao, Y., Sun, S., Hu, C. & Ping, L. (2015). Effect of light intensity on the capability of different
microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. International Biodeterioration & Biodegradation 104, 157-163.
Peerapornpisal, Y. (2013). Freshwater algae in Thailand. Chiang Mai: Department of biology, Faculty of
science, Chiang Mai University. (in Thai)
Pérez, L., Cancela,A., Maceiras, R., Salgueiro, J. L. & Sánchez, A. (2015) Selenastrum capricornutum:
harvesting and oil extraction, for biodiesel production. Eur. J. Sustain. Dev., 4, 97-102.
Rocha, G. S., Parrish, C. C., Lombardi, A. T. & Melão, M. da G. G. (2018) Biochemical and physiological
responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus
concentrations. Journal of Applied Phycology, 30, 2167-2177.
Sadvakasova, A. K., Akmukhanova, N. R., Bolatkhan, K., Zayadan, B. K., Usserbayeva, A. A., Bauenova, M.
O., Akhmetkaliyeva, A. E. & Allakhverdiev, S. I. (2019). Search for new strains of microalgae-producers of lipids from natural sources for biodiesel production. International journal of hydrogen energy, 44, 5844-5853.
Salim, M. A. (2013). The growth of Ankistrodesmus sp. in response to CO2 induction. Journal of Asian
Scientific Research, 3(1), 75-84.
Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. & Smith, A. G. (2010).
Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21, 277-286.
Singh, J. and Sai, G. (2010). Commercialization potential of microalgae for biofuels production. Renewable
and Sustainable Energy Reviews, 14, 2596-2610.
Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen,
phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 22–29.
Song, M., Pei, H., Hua, W. & Maa G. (2013). Evaluation of the potential of 10 microalgal strains for biodiesel
Production. Bioresour. Technol., 141, 245–251.
Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, B. G. (1971). Purification and properties of
unicellular blue green algae (Order Chroococcales). Bacteriol. Rev., 35, 171-205.
Xiao, M., Shin, H-J. & Dong, Q. (2013). Advances in cultivation and processing techniques for microalgal
biodiesel: a review. J. Chem. Eng., 30(12), 2119-2126.
Xiaodong, D., Yajun, L. & Xiaowen, F. (2009). A promising feedstock for biodiesel. African Journal of
Microbiology Research, 3(13), 1008-1014.
Xin, L., Hong-ying, Ke, H. G. and Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus
concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga
Scenedesmus sp. Bioresour. Technol, 101, 5494-5500.
Yee, W. (2016). Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini
review. World J. Microbiol. Biotechnol., 32(4), 1-11.
Zhang, S., Liu, P-h., Yang, X., Hao, Z-d., Zhang, L., Luo, N. & Shi, J. (2014). Isolation and identification by 18S rDNA sequence of high lipid potential microalgal species for fuel production in Hainan
Dao. Biomass and Bioenergy, 66, 197-203.
Algal Culturing Techniques. (pp. 83-100). London: Elsevier Academic Press.
Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, C. & Perales, J. A. (2014). Lipid
production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Appl. Biochem. Biotechnol., 174, 1471-1483.
Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. J. Biochem. Physiol,
37, 911-917.
Brennan, L. & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production,
processing and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
Borowitzka, M. A. (1992). Algal biotechnology products and processes-matching science and economics.
J. Appl. Phycol., 4, 267-279.
Chakravarty, S. & Mallick, N. (2019). Optimization of lipid accumulation in an aboriginal green microalga
Selenastrum sp. GA66 for biodiesel production. Biomass and Bioenergy, 126, 1-13.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology, 25, 294-306.
Doan, T. T. Y., Sivaloganathan, B. & Obbard, J. P. (2011). Screening of marine microalgae for biodiesel
Feedstock. Biomass and Bioenergy, 35, 2534-2544.
El-Sheekh, M. M. & Hamouda, R. A. (2016). Lipids extraction from the green alga Ankistrodesmus falcatus
using different methods. Rend. Fis. Acc. Lincei., 27, 589-595.
Feng, P., Deng, Z., Hua, Z., & Fan, L. (2012). Lipid accumulation and growth characteristics of Chlorella
zofingiensis under different nitrate and phosphate concentrations. J. Biosci. Bioeng., 114, 405-410.
George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T. & Mishra, S. (2014). Effects of different
media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374.
Griffiths, M. J. & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal
species for biodiesel production. J. Appl. Phycol., 21, 493-507.
Guillard, R. R. L. (1995). Culture methods. In G. M. Hallegraeff, D. M. Anderson and A. D. Cembella. (eds.),
Manual on Harmful Marine Microalgae, IOC Manuals and Guides No.33. (pp.45-62). Paris: UNESCO.
Guillard, R. R. L. (2005). Purification methods for microalgae. In R. A. Anderson. (ed.), Algal Culturing
Techniques. (pp. 117-132). London: Elsevier Academic Press.
Halim, R., Danquah, M.K. & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production:
A review. Biotechnology Advances, 30, 709-732.
He, Q., Yang, H. & Hu, C. (2015). Optimizing light regimes on growth and lipid accumulation in
Ankistrodesmus fusiformis H1 for biodiesel production. Bioresource Technology, 198, 876-883.
Hoshow, R. W. & Rosowski, J. R. (1973). Method of microscopic algae, pp. 53-68, In Stein, J. R. (ed.), Hand
book of phycological methods culture methods and growth measurements. Cambridge: Cambridge University Press.
Jayanta, T., Chandra, K. M. & Chandra, G. B. (2012). Growth, total lipid content and fatty acid profile of a
native strain of the freshwater oleaginous microalgae Ankistrodesmus falcatus (Ralf) grown under salt stress condition. International Research Journal of Biological Sciences, 1(8), 27-35.
Jeong, H., Lee, J. & Cha, M. (2013). Energy efficient growth control of microalgae using photobiological
methods. Renew. Energy, 54, 161-165.
Kilham, S. S., Kreeger, D. A., Goulden, C. E. & Lynn, S. G. (1997). Effect of nutrient limitation on biochemical
constituents of Ankistrodesmus falcatus. Freshwater Biology, 38, 591-596.
Kudahettige, N. P., Pickova, J. & Gentili, F. G. (2018). Stressing Algae for Biofuel Production: Biomass and
Biochemical Composition of Scenedesmus dimorphus and Selenastrum minutum Grown in Municipal Untreated Wastewater. Frontiers in Energy Research, 6(132), 1-10.
Lamaisri, C., Punsuvon, V., Chanprame, S., Arunyanark, A., Srinives, P. & Liangsakul, P. (2015). Relationship
between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin J. Sci. Technol., 37(4), 389-395.
Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y. & Oh, H.-M. (2010). Comparison of several methods for effective
lipid extraction from microalgae. Bioresource Technology, 101, S75–S77.
Lepage, G. & Roy, C. C. (1986). Direct Transesterification of All Classes of Lipids in a One-Step Reaction.
Journal of Lipid Research, 27(1), 114-120.
Marika, T., Anne, N., Kalle, V., Anne, O., Silja, Kostia. Martin, R. (2017). Culturing of Selenastrum on diluted
composting fluids; conversion of waste to valuable algal biomass in presence of bacteria. Bioresour. Technol, 238, 205-213.
Mori, C. C., Bagatini, I. L., da Silva, T. G., Parrish, C. C. & Vieira, A. A. H. (2018). Use of fatty acids in the
chemotaxonomy of the family Selenastraceae (Sphaeropleales, Chlorophyceae) Phytochemistry, 151,
9-16.
Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D. Pereira, S. A., Druzian, J. I., Souza, C. O., Vich, D. V.,
Carvalho, G. C. & Nascimento, M. A. (2013). Screening Microalgae Strains for Biodiesel Production:
Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria.
Bioenerg. Res., 6, 1-13.
Ouyang, Y., Zhao, Y., Sun, S., Hu, C. & Ping, L. (2015). Effect of light intensity on the capability of different
microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. International Biodeterioration & Biodegradation 104, 157-163.
Peerapornpisal, Y. (2013). Freshwater algae in Thailand. Chiang Mai: Department of biology, Faculty of
science, Chiang Mai University. (in Thai)
Pérez, L., Cancela,A., Maceiras, R., Salgueiro, J. L. & Sánchez, A. (2015) Selenastrum capricornutum:
harvesting and oil extraction, for biodiesel production. Eur. J. Sustain. Dev., 4, 97-102.
Rocha, G. S., Parrish, C. C., Lombardi, A. T. & Melão, M. da G. G. (2018) Biochemical and physiological
responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus
concentrations. Journal of Applied Phycology, 30, 2167-2177.
Sadvakasova, A. K., Akmukhanova, N. R., Bolatkhan, K., Zayadan, B. K., Usserbayeva, A. A., Bauenova, M.
O., Akhmetkaliyeva, A. E. & Allakhverdiev, S. I. (2019). Search for new strains of microalgae-producers of lipids from natural sources for biodiesel production. International journal of hydrogen energy, 44, 5844-5853.
Salim, M. A. (2013). The growth of Ankistrodesmus sp. in response to CO2 induction. Journal of Asian
Scientific Research, 3(1), 75-84.
Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. & Smith, A. G. (2010).
Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21, 277-286.
Singh, J. and Sai, G. (2010). Commercialization potential of microalgae for biofuels production. Renewable
and Sustainable Energy Reviews, 14, 2596-2610.
Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen,
phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 22–29.
Song, M., Pei, H., Hua, W. & Maa G. (2013). Evaluation of the potential of 10 microalgal strains for biodiesel
Production. Bioresour. Technol., 141, 245–251.
Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, B. G. (1971). Purification and properties of
unicellular blue green algae (Order Chroococcales). Bacteriol. Rev., 35, 171-205.
Xiao, M., Shin, H-J. & Dong, Q. (2013). Advances in cultivation and processing techniques for microalgal
biodiesel: a review. J. Chem. Eng., 30(12), 2119-2126.
Xiaodong, D., Yajun, L. & Xiaowen, F. (2009). A promising feedstock for biodiesel. African Journal of
Microbiology Research, 3(13), 1008-1014.
Xin, L., Hong-ying, Ke, H. G. and Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus
concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga
Scenedesmus sp. Bioresour. Technol, 101, 5494-5500.
Yee, W. (2016). Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini
review. World J. Microbiol. Biotechnol., 32(4), 1-11.
Zhang, S., Liu, P-h., Yang, X., Hao, Z-d., Zhang, L., Luo, N. & Shi, J. (2014). Isolation and identification by 18S rDNA sequence of high lipid potential microalgal species for fuel production in Hainan
Dao. Biomass and Bioenergy, 66, 197-203.
Downloads
Published
2020-09-01
Issue
Section
Research Article