Optimization of Extraction Conditions for Improving Bioactive Compounds and Antioxidant Activities from Karonda (Carissa carandas Linn.) Fruits Using Response Surface Methodology

Authors

  • Pichit Chodok
  • Supichaya Khumkhom Phranakhon si ayutthaya University

Abstract

This study for the first time designed to optimize the extraction conditions of total phenolic content, total flavonoid content and ferric reducing antioxidant power (FRAP) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) scavenging activities from fruits of karonda (Carissa carandas Linn.) using response surface methodology (RSM). For the optimization, a five-factors-five-level (-2, -1, 0, +1 and +2), central composite design (CCD) including 50 experimental runs. Analysis of variance (ANOVA) results showed that the solid-liquid ratio (1:20-1:100 g/mL), ethanol concentration (60.0-100.0%), HCl concentration (0.0-0.8%), extraction time (1.0-3.0 h) and extraction temperature (20.0-60.0 oC) significantly (p < 0.05) affected all responses. The optimized extraction conditions were solid-liquid ratio of 1:80 g/mL, ethanol concentration of 70%, HCl concentration of 0.6%, extraction time of 2.5 h and extraction temperature of 50°C for total phenolic content (17.80 mg/g), total flavonoid content (29.28 mg/g), FRAP (30.52 mg TE/g) and ABTS•+ scavenging activities (20.24 mg TE/g). These experimental values fit well with the predicted values (17.48 mg/g, 28.59 mg/g, 30.80 mg TE/g and 19.86 mg TE/g, respectively).   Keywords :  Carissa carandas Linn., total phenolic content, total flavonoid content, antioxidant activities,                     response surface methodology

References

Al-Farsi, M.A., & Lee, C.Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chemistry, 108, 977-985.
Arif, M., Fareed, S., Hussain, T., & Ali, M. (2013). Adaptogenic activity of lanostane triterpenoid isolated from Carissa carandas fruit against physically and chemically challenged experimental mice. Pharmacognosy Journal, 5(5), 216-220.
Belwal, T., Dhyani, P., Bhatt, I.D., Rawal, R.S., & Pande, V. (2016). Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry, 207, 115-124.
Buachoon, N. (2018). Antioxidant activity and total phenolic from seed and fruits of Carissa carandas. VRU Research and Development Journal Science and Technology, 13(2), 53-63. (in Thai)
Cacace, J.E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59, 379-389.
Chanpirak, A., Dumnin, P. & Hongpuay, A. (2018). Optimization of oil extraction from spent coffee grounds (Coffea canepgora var. Robusta/Coffea arabica) by hexane using response surface methodology. The Journal of KMUTNB, 28(4), 799-811. (in Thai)
Chen, S., Zeng, Z., Hu, N., Bai, B., Wang, H. & Suo, Y. (2018). Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. Fruit using response surface methodology. Food Chemistry, 242, 1-8.
Dhodi, J.B., Thanekar, D.R., Mestry, S.N., & Juvekar, A.R. (2015). Carissa carandas Linn. fruit extract ameliorates gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress. Journal of Acute Disease, 4(2), 135-140.
Ge, Q., Huang, J., Mao, J-W., Gong, J-Y., Zhou, Y-F., & Huang, J-X. (2014). Optimization of total polysaccharide extraction from Herba Lophatheri using RSM and antioxidant activities. International Journal of Biological Macromolecules, 67, 37-42.
Gupta, P., Bhatnagar, I., Kim, S-K., Verma, A.K., & Sharma, A. (2014). In-vitro cancer cell cytotoxicity and alpha amylase inhibition effect of seven tropical fruit residues. Asian Pacific Journal of Tropical Biomedicine, 4(2), s665-s671.
Hong, R., Ting, L., & Huijie, W. (2017). Optimization of extraction condition for phytic acid from peanut meal by response surface methodology. Resource-Efficient Technologies, 3, 226-231.
Ilaiyaraja, N., Likhith, K.R., Babu, G.R.S. & Khanum, F. (2015). Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chemistry, 173, 348–354.
Itankar, P.R., Lokhande, S.J., Verma, P.R., Arora, S.K., Sahu, R.A., & Patil, A.T. (2011). Antidiabetic potential of unripe Carissa carandas Linn. fruit extract. Journal of Ethnopharmacology, 135(2), 430-433.
Jiang, H.L., Yang, J.L., & Shi, Y.P. (2017). Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrasonics Sonochemistry, 34, 325-331.
Kishimoto, Y., Saito, N., Kurita, K., Shimokado, K., Maruyama, N., & Ishigami, A. (2013). Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochemical and Biophysical Research Communications, 430, 579-584.
Kubola, J., Siriamornpun, S., & Meeso, N. (2011). Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chemistry, 126(3), 972-981.
Lee, H.V., Yunus, R., Juan, J.C., & Taufiq-Yap, Y.H. (2011). Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Processing Technology, 92, 2420-2428.
Nuengchamnong, N., & Ingkaninan, K. (2010). On-line HPLC–MS–DPPH assay for the analysis of phenolic antioxidant compounds in fruit wine: Antidesma thwaitesianum Muell. Food Chemistry, 118(1), 147-152.
Panghal, A., Kaur, R., Janghu, S., Sharma, P., Sharma, P., & Chhikara, N. (2019). Nutritional, phytochemical, functional and sensorial attributes of Syzygium cumini L. pulp incorporated pasta. Food Chemistry, 289,
723-728.
Phansawan, B. (2013). Free radicals, antioxidants and antioxidant activity determination. Thai Science and Technology Journal, 21(3), 275-286. (in Thai)
Ryu, D., & Koh, E. (2018). Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food Chemistry, 261, 260-266.
Sarkar, R., Kundu, A., Banerjee, K., & Saha, S. (2018). Anthocyanin composition and potential bioactivity of karonda (Carissa carandas L.) fruit: An Indian source of biocolorant. LWT, 93, 673-678.
Shao, Y., Xu, F., Sun, X., Bao, J., & Beta, T. (2014). Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59, 211-218.
Swamy, G.J., Sangamithra, A., & Chandrasekar, V. (2014). Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box-Behnken design of experiments. Dyes and Pigments, 111, 64-74.
Wang, J., Sun, B.G., Cao, Y.P., Tian, Y., & Li, X.H. (2008). Optimization of ultrasound assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106, 804-810.

Downloads

Published

2020-05-01