Phase Transformations in Ternary Wurtzite-to-Rocksalt type of LiGaO2 from Ab Initio Calculation
Abstract
A ternary wurtzite-to-rocksalt phase transformation, so called B4-B1 pathway, in LiGaO2 (LGO) is investigated using ab initio calculation. The result reveals that under hydrostatic compression up to 3.7 GPa, LGO finally exhibits structure of a rocksalt-like with body-centered tetragonal (space group I41/amd) structure. According to further calculations, the stability of the phase transformation processes can be characterized by calculating surface enthalpy, which can be revealed energy barriers of the transformation paths. Finally, the energy barrier is discovered corresponding to the (I41/amd) structure at 86.25 meV/atoms. Furthermore, the energy barrier in parallel (in-plane) is lower than the straight diagonal path. Keywords : phase transformations, LiGaO2, B4-B1 pathway, ab initioReferences
Boonchun, A. and Lambrecht, W. R. L.(2010). First-principles study of the elasticity, piezoelectricity, and vibrational modes in LiGaO2 compared with ZnO and GaN. Physical Review. B., 81, 235214.
Chou. M.M.C., Hang. D.R. , Chencandliao, T.H. (2011), Growth of nonpolar ZnO films on LiGaO2 substrate by molecular beam epitaxy. Thin Solid Films., 519, 3627.
Hu.Q, Yan.X, Lei.L,Wang.Q, Feng.L, Qi.L, Zhang.L, Peng.F, Ohfuji.H and He.D (2018). Pressure induced solid-solid reconstructive phase transition in LiGaO2 dominated by elastic strain. Physical Review. B., 97, 014106.
Kamijoh. T and Kuriyama.K (1981), Single‐crystal growth and characterization of LiGaSe2
Journal of Crystal Growth ,51, 6.
Kang. S, Doolittle.W.A and Brown.A.S (1999), Electrical and structural characterization of AlxGa1−xN/GaN heterostructures grown on LiGaO2 substrates, Apply Physics Letters, 74,3380.
Kresse, G. and Furthmüller, J. (1996), Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15.
Limpijumnong.S and Jungthawan. S (2004), First-principles study of the wurtzite-to-rocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier. Physical Review B., 70, 054104.
Limpijumnong, S., Lambrecht, W. R. L., Segall,B., and Kim,K.(1996),Band structure and cation ordering in LiGaO2, Materials Research Society Proceedings, 449.
Lei. L., Ohfuji. H., Qin. J., Zhang. X., Wang. F, and Irifune. T(2013). High-pressure Raman spectroscopy study of LiGaO2 .Solid State Communications, 164,6.
Marezio, M. and Remeika, J. P. (1965),.High pressure phase of LiGaO2 .Journal of Physics and Chemistry of Solids, 26(8), 1277-1280.
Monkhorst, H. J. and Pack, J. D.(1976). Special points for Brillouin-zone integrations,Physical Review B., 13, 5188.
Perdew.J.P., Burke.K, and Ernzerhof.M (1981), Self-interation correction to density-functional approximations for many-electron systems. Physical Review B, 10, 5048-5079.
Perdew.J.P., Burke.K, and Ernzerhof.M (1997), Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865.
Perlin.P, Jauberthie-Carillon.C, Itie.J.P,San Miguel.A, Grzegory.I, and Polian.A (1992). Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Physical Review B., 45, 83.
Sailuam, W., Sarasamak,K. Polanco, M. A. M. and Limpijumnong,S.(2017). Pressure-induced phase t ransformations of LiGaO2: First principles study. Ceramics International, 43, 376-380.
Yan.X ,Dong. H, Li. Y, Lin. C, Park. C, He. D and Yang. W (2016), Phase transition induced strain in ZnO under high pressure, Scientific Reports, 6, 24958.
Ying.W, Wang.W, Liu.Z, Lin.Y, Zhou.S,.Qian.H and Li.G (2015), Epitaxial growth and its mechanism of GaN films on nitrided LiGaO2(001) substrates by pulsed laser deposition. CrystEngComm, 17, 1073-1079.
Yoshida.M, Onadera.A, Ueno.M, Takemura.K and Shimomura.O (1993). Pressure-induced phase transition in SiC. Physical Review. B., 48, (1993)10587.
Yu. Y. G., Wentzcovitch. R. M., Tsuchiya. T., Umemoto. K., and Weidner. D. J(2007)., Elasticity of post perovskite MgSiO3 .Geophysical Research Letters. 34.
Zheng.Y, Wang.W, Li.X, Li.Y, Huang.L and Li.G (2017). Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism. Physical Chemistry Chemical Physics, 19, 21467-21473.
Chou. M.M.C., Hang. D.R. , Chencandliao, T.H. (2011), Growth of nonpolar ZnO films on LiGaO2 substrate by molecular beam epitaxy. Thin Solid Films., 519, 3627.
Hu.Q, Yan.X, Lei.L,Wang.Q, Feng.L, Qi.L, Zhang.L, Peng.F, Ohfuji.H and He.D (2018). Pressure induced solid-solid reconstructive phase transition in LiGaO2 dominated by elastic strain. Physical Review. B., 97, 014106.
Kamijoh. T and Kuriyama.K (1981), Single‐crystal growth and characterization of LiGaSe2
Journal of Crystal Growth ,51, 6.
Kang. S, Doolittle.W.A and Brown.A.S (1999), Electrical and structural characterization of AlxGa1−xN/GaN heterostructures grown on LiGaO2 substrates, Apply Physics Letters, 74,3380.
Kresse, G. and Furthmüller, J. (1996), Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15.
Limpijumnong.S and Jungthawan. S (2004), First-principles study of the wurtzite-to-rocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier. Physical Review B., 70, 054104.
Limpijumnong, S., Lambrecht, W. R. L., Segall,B., and Kim,K.(1996),Band structure and cation ordering in LiGaO2, Materials Research Society Proceedings, 449.
Lei. L., Ohfuji. H., Qin. J., Zhang. X., Wang. F, and Irifune. T(2013). High-pressure Raman spectroscopy study of LiGaO2 .Solid State Communications, 164,6.
Marezio, M. and Remeika, J. P. (1965),.High pressure phase of LiGaO2 .Journal of Physics and Chemistry of Solids, 26(8), 1277-1280.
Monkhorst, H. J. and Pack, J. D.(1976). Special points for Brillouin-zone integrations,Physical Review B., 13, 5188.
Perdew.J.P., Burke.K, and Ernzerhof.M (1981), Self-interation correction to density-functional approximations for many-electron systems. Physical Review B, 10, 5048-5079.
Perdew.J.P., Burke.K, and Ernzerhof.M (1997), Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865.
Perlin.P, Jauberthie-Carillon.C, Itie.J.P,San Miguel.A, Grzegory.I, and Polian.A (1992). Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Physical Review B., 45, 83.
Sailuam, W., Sarasamak,K. Polanco, M. A. M. and Limpijumnong,S.(2017). Pressure-induced phase t ransformations of LiGaO2: First principles study. Ceramics International, 43, 376-380.
Yan.X ,Dong. H, Li. Y, Lin. C, Park. C, He. D and Yang. W (2016), Phase transition induced strain in ZnO under high pressure, Scientific Reports, 6, 24958.
Ying.W, Wang.W, Liu.Z, Lin.Y, Zhou.S,.Qian.H and Li.G (2015), Epitaxial growth and its mechanism of GaN films on nitrided LiGaO2(001) substrates by pulsed laser deposition. CrystEngComm, 17, 1073-1079.
Yoshida.M, Onadera.A, Ueno.M, Takemura.K and Shimomura.O (1993). Pressure-induced phase transition in SiC. Physical Review. B., 48, (1993)10587.
Yu. Y. G., Wentzcovitch. R. M., Tsuchiya. T., Umemoto. K., and Weidner. D. J(2007)., Elasticity of post perovskite MgSiO3 .Geophysical Research Letters. 34.
Zheng.Y, Wang.W, Li.X, Li.Y, Huang.L and Li.G (2017). Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism. Physical Chemistry Chemical Physics, 19, 21467-21473.
Downloads
Published
2020-05-01
Issue
Section
Research Article