Fabrication of Tin Oxide Nanofibers by Electrospinning Method

Authors

  • Orawan Bundit ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม
  • Kwanruthai Wongsaprom ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม

Abstract

        This work studied the synthesis of SnO2 nanofibers by electrospinning method and the nanofibers were calcined at 500, 600 and 700 ̊C for 2 and 4 h in air. The crystal structure and surface morphology of SnO2 nanofibers were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy              (FE-SEM and Fourier transform infrared spectroscopy (FT-IR) respectity. The optical properties of the samples were investigated by Ultraviolet-visible spectroscopy (UV-vis). The XRD results confirmed the formation of            a SnO2 phase with rutile tetragonal structure.  FE-SEM image of SnO2 nanofibers showed interwoven into                    a network structure with diameter from 178 to 200 nm. The UV-vis results indicated that a strong ultraviolet absorption at absorption peak position about 300 nm and the energy band gap of SnO2 nanofibers were in range of 3.67-3.78 eV.Keywords: tin oxide, electrospinning method, nanofibers, tetragonal structure

Author Biography

Orawan Bundit, ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม

  

References

Abdul, F.K., Mazhar, M., Muhammad, A., & Muhammad, A. (2010). Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air. Applied Surface Science, 256,
2252–2258.
Abhijit, A., & Yadav. (2016). SnO2 thin film electrodes deposited by spray pyrolysis for electrochemical supercapacitor applications. Journal of Materials Science: Materials in Electronics, 27, 1866–1872.
Ameer, A., Sami, S.H., Numan, A.S., & Faheem, A. (2013). Microwave-assisted synthesis of SnO2 nanorods for
oxygen gas sensing at room temperature. International Journal of Nanomedicine, 8, 3875–3882.

Ateeq, A., Ali, T., Siddique, M.N., Abid, A., & Tripathi, P. (2017). Enhanced room temperature ferromagnetism in Ni doped SnO2 nano- particles: A comprehensive study. Journal of Applied Physics, 122,
083906-11.
Chao, S., & Xiangting, D. (2011). Synthesis and formation mechanism of TiO2/SnO2 composite nanobelts by electrospinning. Optoelectronics and Advanced Materials, 12(5), 1296–1300.
Dharmaraj, N., Kim, C.H., Kim, K.W., Kim, H.Y., & Suh, E.K. (2006). Spectral studies of SnO2 nanofibres prepared by electrospinning method. Spectrochimica Acta Part A, 64, 136–140.
Gaber, A., Abdel-Latief, A.Y., Abdel-Rahim, M.A., Mahmoud, N., & Abdel, S. (2013). Thermally induced structural changes and optical properties of tin dioxide nanoparticles synthesized by a conventional precipitation method. Materials Science in Semiconductor Processing, 16, 1784–1790.
Gondal, M.A., Drmosh, Q.A., & Saleh, T.A. (2010). Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Applied Surface Science, 256, 7067–7070.
Hilal, K., Ali, O.A., & Hatem, A. (2012). Sol–Gel Synthesis of Nanostructured SnO2 Thin Film Anodes
for Li-Ion Batteries. Acta Physica Polonica A. 121, 227- 229.
Hongkang, W., Fang, F., Feihu, Z., Hong, E., Stephen, V.K., Jiaqiang, X., Shi-Gang, S., & Andrey, L.R. (2012). Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated formation of solid and hollow structures. Journal of Materials Chemistry, 22, 2140-2148.
Hongliang, Z., Deren, Y., Guixia ,Y., Hui, Z., & Kuihong, Y. (2006). A simple hydrothermal route for
synthesizing SnO2 quantum dots. Nanotechnology, 17, 2386–2389.
Jae, Y.P., Kandasami, A., Sun-Woo, C., & Sang, S.K. (2011). Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties. Sensors and Actuators B, 152, 254–260.
Jinyun, L., Tao, L., Sitaramanjaney, M., Fanli, M., Bai, S., Minqiang, L., & Jinhuai, L. (2011). A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. Chemical Communications, 16, 1-6.
Lin, T., Lihong, W., & Yude, W. (2011). Hydrothermal Synthesis of SnO2 Nanostructures with Different
Morphologies and Their Optical Properties. Journal of Nanomaterials, 10.
Loría-Bastarrachea, M.I., Herrera-Kao, W., Cauich-Rodríguez, J.V., Cervantes-U, J.M., Vázquez-Torres, H., & Άvila-Ortega, A. (2011). A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). Journal of Thermal Analysis and Calorimetry, 104, 737–742.
Min, S.P., Guo, X.W., Yong, M.K., David, W., Shi, X.D., & Hua, K.L. (2007). Preparation and Electro-chemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie International Edition, 46, 750–753.
Mohana, P.S., Geetha, A., Ramamurthi, K., Pandiyarasan, V., & Ikeda, H. (2017). Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method. Journal of Materials Science: Materials in Electronics, 29, 658–666.
Peidong, Y., Haoquan, Y., Samuel, M., Richard, R., Justin, J., Richard, S., Nathan, M., Johnny, P., Rongrui, H., & Heon, J.C. (2002). Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials 12(5), 323-331.
Rajendran, V., & Anandan, K. (2012). Size, morphology and optical properties of SnO2 nanoparticles synthesized by facile surfactant-assisted solvothermal processing. Materials Science in Semiconductor Processing, 15, 393–400.
Sarhaddi, R., Shahtahmasebi, N., Rokn-Abadi, R.M., & Bagheri-Mohagheghi, M.M. (2010). Effect of post-annealing temperat ure on nano-str ucture and energy band gap of indium tin oxide (ITO) nano-particles synthesized by polymerizing–complexing sol–gel method. Physica E 43, 452–457.
Rashmi, R., & Seema, S. (2016). Preparation and Characterization of SnO2 Nanofibers via Electrospinning. Advances in Nanoparticles, 5, 53-59.
Shanmin, G., Li, P., Hongwei, C., & Xiaoping, Z. (2004). Synthesis of SnO2 nanocrystals by solid state reaction
followed by calcination. China Particuology, 4, 177-181.
Wongsaprom, K., Bornphotsawatkun, R., & Swatsitang, E. (2014). Synthesis and characterization of tin oxide (SnO2) nanocrystalline powders by a simple modified sol–gel route. Applied Physics A, 114, 373–379.
Xia, X., Dong, X.J., Wei, Q.F., Cai, Y.B., & Lu, K.Y. (2012). Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Express Polymer Letters, 6(20), 169–176.
Yang, Z., Xiuli, H., Jianping, L., Zhenjiang, M., & Feng, H. (2008). Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sensors and Actuators B, 132, 67–73.
Younan, X., Peidong, Y., Yugang, S., Yiying, W., Brian, M., Byron, G., Yadong, Y., Franklin, K., & Haoquan, Y. (2003). One-Dimensional Nano-structures : Synthesis Characterization and Application. Advanced Functional Materials, 15(5), 353-389.
Yu, W., Milca, A., Neliza, L., Idalia, R., Rogerio, F., Stephane, E., & Santiago-Aviíes, J.J. (2004). Synthesis and characterization of tin oxide microfibres electrospun from a simple precursor solution. Semiconductor Science and Technology, 19, 1057-1060.
Zhigang, W., Feng, Z., & Kanglian, L. (2012). Synthesis of porous SnO2 nanospheres and their application for lithium-ion battery. Materials Letters, 68, 469–471.
Zhong, A.H., Yu, L.X., Yao, X.W., Li, P.M., Yu, Y.Y., & Zi, Y.Z. (2009). Polyaniline/SnO2 nanocomposite for supercapacitor applications. Materials Chemistry and Physics, 114, 990–995.

Downloads

Published

2019-02-21