A Preliminary Study of Genetic Differentiation in the Japanese Seahorse (Hippocampus mohnikei) Populations: a Possibility of Cryptic Species

Authors

  • Thadsin Panithanarak
  • Ratima Karuwanjaroen

Abstract

The Japanese seahorse (Hippocampus mohnikei) had been confirmed to present only in Japan, although recently its range has greatly expanded to many countries in Asia such as India, Singapore, Thailand, Cambodia, Malaysia, and Vietnam. This could possibly reduce gene flow between distant populations, allowing differentiation to occur. Therefore, this study aimed to investigate levels of genetic differentiations, population genetic structure and genetic distances among the populations found in the Gulf of Thailand, Japanese waters and North China’s coast based on cytochrome b sequence analyses (702 bp). The analyses of the Gulf of Thailand sequences (2 haplotypes, n = 6, Bangsaen Beach, Chonburi Province) compared with Japanese waters (2 haplotypes, n = 3) and North China’s coast (29 haplotypes, n = 50, Yangmadao and Laizhouwan) suggested that the population in the Gulf of Thailand was significantly different from those in Japan and North China’s coast (FST, P < 0.05). High genetic variance was observed among the 2 population groups (63.89%, P < 0.0001). Genetic distances (Kimura 2-parameter) between the populations from the Gulf of Thailand and North China’s coast, and those from the Gulf of Thailand and Japan were high (13.54-14.46 % and 14.42-14.79 %, respectively), similar to the distances observed between species. This suggests genetically distinct population in the Gulf of Thailand and the possibility of cryptic species within H. mohnikei population range. More studies based on both genetic and morphological data are important to correctly identify the Japanese seahorse found in Thai waters.         Keywords :  Japanese seahorse, Hippocampus mohnikei, genetic distance, Gulf of Thailand

References

Aylesworth, L., Lawson, J. M., Laksanawimol, P., Ferber, P. & Loh, T.-L. (2016). New records of the Japanese seahorse Hippocampus mohnikei in Southeast Asia to updates in range, habitat and threats. Journal of Fish Biology, 88(4), 1620-1630.
BOLD. (2016). Barcode of Life Data System. Hippocampus specimens on BOLD (Barcode of Life Data System). Retrieved July 25, 2018, from http://dx.doi.org/10.5883/DS-SH2016
Casey, S. P., Hall, H. J., Stanley, H. F. & Vincent, A. C. J. (2004). The origin and evolution of seahorses (genus Hippocampus): a phylogenetic study using the cytochrome b gene of mitochondrial DNA. Molecular Phylogenetics and Evolution, 30(2004), 261-272.
Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries, 4, 25-64.
Excoffier, L., Laval, G. & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Laksanawimol, P., Petpiroon, S. & Damrongphol, P. (2013). Trade of seahorses, Hippocampus spp. (Actinopertygii: Syngnathiformes: Syngnathidae), on the East Coast of the Gulf of Thailand. Acta Icthologica et Piscatoria, 43, 229-235.
Lim, K. (2013). New Singapore record of the seahorse, Hippocampus mohnikei. Singapore Biodiversity Records, 2013, 68-69.
Lipton, A. P. & Thangaraj, M. (2013). Distribution pattern of seahorse species (Genus: Hippocampus) in Tamilnadu and Kerala coasts of India. Notulae Scientia Biologicae, 5, 20-24.
Liu, J. X., Gao, T. X., Wu, S. F. & Zhang, Y. P. (2007). Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Molecular Ecology, 16, 275-288.
Lourie, S. A., Foster, S. J., Cooper, E. W. T. & Vincent, A. C. J. (2004). A Guide to the Identification of Seahorses. Project Seahorse and TRAFFIC North America. Washington, D.C.: University of British Columbia and World Wildlife Fund.
Lourie, S. A., Pollom, R. A. & Foster, S. J. (2016). A global revision of the Seahorses Hippocampus Rafinesque 1810 (Actinopterygii: Syngnathiformes): Taxonomy and biogeography with recommendations for further research. Zootaxa, 4146(1), 001-066.
Lourie, S. A., Vincent, A. C. J. & Hall, H. J. (1999). Seahorse: an identification guide to the world’s species and their conservation. London: Project Seahorse.
Michalakis, Y., & Excoffier, L. (1996). A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142,1061-1064.
Nickel, J. & Cursons, R. (2012). Genetic diversity and population structure of the pot-belly seahorse Hippocampus abdominalis in New Zealand. New Zealand Journal of Marine and Freshwater Research, 46(2), 207-218.
Panithanarak, T. (2015). Phylogeny of Thai seahorses inferred from mitochondrial DNA cytochrome b gene. In Proceedings of the Burapha University International Conference 2015 (BUU2015). (pp. 1010-1023). Chonburi: Burapha University.
Pollom, R. (2017). Hippocampus mohnikei. The IUCN Red List of Threatened Species 2017: e. T41005A54907304. Retrieved July 25, 2018, from http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41005A54907304.en
Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. & Sanchez-Gracia, A. (2017). DnaSP v6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolutions, 34, 3299-3302.
Ryman, N. & Palm, S. (2006). POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology, 6, 600-602.
Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S., Larsson, K.-H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L. & Dimitrov, D. (2018). Finding evolutionary processes hidden in cryptic species. Trends in Ecology & Evolution, 33(3), 153-163.
Swofford, D. L. (2002). PAUP*-phylogenetic analysis using parsimony (*and other methods), Version 4.0b10. Sunderland, MA: Sinauer Associates.
Thangaraj, M. & Lipton, A. P. (2007). Occurrence of the Japanese seahorse Hippocampus mohnikei Bleeker 1854 from the Palk Bay coast of southeastern India. Journal of Fish Biology, 70, 310-312.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876-4882.
Wang, P. (1999). Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Marine Geology, 156, 5-39.
Ward, S. M. & Jasieniuk, M. (2009). Review: sampling weedy and invasive plant populations for genetic diversity analysis. Weed Science, 57, 593-602.
Woodall, L. C., Otero-Ferrer, F., Correia, M., Curtis, J. M. R., Garrick-Maidment, N., Shaw, P. W. & Koldewey, H. J. (2018). A synthesis of European seahorse taxonomy, population structure, and habitat use as a basis for assessment, monitoring and conservation. Marine Biology, 165(1), 19. doi:10.1007/s00227-017-3274-y
Yagi, Y., Kinoshita, I., Fujita, S. Aoyama, D. & Kawamura, Y. (2011). Importance of the upper estuary as a nursery ground for fishes in Ariake Bay, Japan. Environmental Biology of Fishes, 91, 337-352.
Zhang, Y., Pham, N. K., Zhang, H., Lin, J. & Lin, Q. (2014). Genetic variations in two seahorse species (Hippocampus mohnikei and Hippocampus trimaculatus): evidence for middle Pleistocene population expansion. PLoS ONE, 9(8), e105494. doi:10.1371/journal.pone.0105494

Downloads

Published

2019-01-17