Synthesis of Pyrrolidinyl PNA Containing Ir-Complex

Authors

  • Thitinan Mitchorp ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร
  • Chaturong Suparpprom ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร

Abstract

Iridium complex is a promising organometallic compound for bio-photophysical studies which have a large Stroke shift, long emissive lifetimes, and high quantum yields in visible range. Synthesis of pyrrolidinyl peptide nucleic acid (acpcPNA) containing [Ir(ppy)2(4’-methyl-2,2’-bipyridine-4-carboxylic acid)](PF6) or Ir-acpcPNA was studied in this research as a candidate probe for DNA detection in Fluorescence In Situ Hybridization (FISH) technique. The coupling condition for labeling Ir-COOH with linker was HATU/DIEA and DCC/NHS and gave 52 and 48 %yield, respectively. However, the coupling reaction between acpcPNA and Ir-COOH with HATU/DIEA condition gave low yield. For condition of DCC/NHS, Ir-acpcPNA product cannot be observed but the mass signal of decomposition of PNA was found. For this phenomenon, we assumed that iridium complexes can act as a catalyst for water oxidation, cause the decomposition of PNA. So, iridium complexes may be applied to use for PNA degradation within target cells.                      Keywords :  pyrrolidinyl PNA, iridium, fluorescent, biomarker

Author Biography

Chaturong Suparpprom, ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร

   

References

Gasser, G., Pinto, A., Neumann, S., Sosniak, A. M., Seitz, M., Merz, K., et al. (2012). Synthesis, characterisation and bioimaging of a fluorescent rhenium-containing PNA bioconjugate. Dalton Trans., 41, 2304-2313.
Gross, A., Husken, N., Schur, J., Raszeja, L., Ott, I. and Metzler-Nolte, N. (2012). A Ruthenocene-PNA Bioconjugate-Synthesis, Characterization, Cytotoxicity, and AAS-Detected Cellular Uptake. Bioconjugate Chem., 23, 1764-1774.
Koh, W. (2015). Peptide Nucleic Acid (PNA) and Its Applications. Retrieved February 10, 2018, from http://121.254.169.23/bbs/ndata/pn_ref/pn_ref_1227242202.pdf.
Nielsen, P. E. (1999). Peptide nucleic acid. A molecule with two identities. Acc. Chem. Res., 32, 624-630.
Reisberg, S., Dang, LA., Nguyen, QA., Piro, B., Noel, V., Nielsen, PE. (2008). Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer. Talanta, 76(1), 206-210.
Sabale, P. M., Georgea, J. T. and Srivatsan, S. G. (2014). A base-modified PNA–graphene oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats. Nanoscale, 6, 10460-10469.
Schatz, P., Distler, J., Berlin, K. and Schuster, M. (2006). Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection. Nucleic Acids Res., 34(8), 59.
Suparpprom, C., Srisuwannaket, C., Sangvanich, P., Vilaivan, T. (2005). Synthesis and oligodeoxynucleotide binding properties of pyrrolidinyl peptide nucleic acids bearing prolyl-2-aminocyclo-pentanecarboxylic acid (ACPC) backbones. Tetrahedron Lett., 46, 2833-2837.
Thomsen, J. M., Huang, D. L., Crabtree, R. H. and Brudvig, G. W. (2015) Iridium-based complexes for water oxidation. Dalton Trans., 44, 12452–12472.
Verheijen, J. C., van de Marel, G. A., van der Boom, J. H. and Metzler-Nolte N. (2000). Transition Metal Derivatives of Peptide Nucleic Acid (PNA) Oligomer-Synthesis, Characterization and DNA binding. Bioconjugate Chem., 11(6), 741-743.
Wang, L., Puodziukynaite, E., Vary, R. P., Grumstrup, E. M., Walczak, R. W., Zolotarskaya, O. Y. (2012). Competition between Ultrafast Energy Flow and Electron Transfer in a Ru(II)-Loaded Polyfluorene Light-Harvesting Polymer. J. Phys. Chem. Lett., 3 (17), 2453–2457.
Zhoa, N., Wu, Y., Wang, R., Shi, L. and Chen, Z. (2011). An Iridium(III) Complex of Oximated 2,2'-bipyridine as a Sensitive Phosphorescent. Analyst, 136, 2277-2282.

Downloads

Published

2018-10-29

Issue

Section

บทความวิจัยจากการประชุมวิชาการระดับชาติ"วิทยาศาสตร์วิจัย"ครั้งที่ 10