Development of Multi-Assay Paper-Based Devices for Analysis of Antioxidant Activity

Authors

  • Chanoknan Phuangbanlang
  • Yupaporn Sameenoi Department of Chemistry, Faculty of Science, Burapha University, Chon Buri, Thailand 20131

Abstract

This work developed a paper-based device for simultaneous determination of multiple antioxidant activity assays including the cupric reducing antioxidant capacity (CUPRAC) assay, the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonate) radical cation (ABTS) assay. The device composed of a central sample zone connected to four detection zones to accommodate three antioxidant assays and a sample blank measurement. Antioxidant activity analysis was achieved by dropping the samples onto the sample zone to flow to the detection zones containing the stored reagents for each antioxidant assay making the change in color that was measured using image J software. The analysis of gallic acid antioxidant standard with CUPRAC, ABTS, and DPPH assay gave the calibration curve in the linear ranges of 1-6 mM, 20-150 µM, and 3-13 mM, respectively, the relative standard deviation from the repetitive analysis of gallic acid at the concentrations in the linear range are 0.70-1.61%, 0.91-4.04% and 1.39-4.91% (n=5), respectively, and a limit of detection of 1 mM 1.10 µM and 1.30 mM, respectively. These preliminary results indicated that the developed paper-based device provided for the analysis of multiple antioxidant assays at the same time with low analysis time and cost, low reagent consumption and is promising to use for antioxidant activity in real samples. Keywords:  multi-assay analysis, antioxidant activity, antioxidant, paper-based devices 

References

Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-printed microfluidic multianalyte chemical sensing paper.
Analytical Chemistry, 80(18), 6928-6934.
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary
polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of
neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
Awika, J. M., Rooney, L. W., Wu, X., Prior, R. L., & Cisneros-Zevallos, L. (2003). Screening methods to measure
antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and
Food Chemistry, 51(23), 6657-6662
Bener, M., Özyürek, M., Güçlü, K., & Apak, R. (2013). Novel optical fiber reflectometric cuprac sensor for total
antioxidant capacity measurement of food extracts and biological samples. Journal of Agricultural and
Food Chemistry, 61(35), 8381-8388

Benzie, I. F., & Strain, J. J. (1999). [2] Ferric reducing/antioxidant power assay: Direct measure of total
antioxidant activity of biological fluids and modified version for simultaneous measurement of total
antioxidant power and ascorbic acid concentration. In Methods In Enzymology, 299, 15-27.
Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2002). Low-Cost Printing of Poly (dimethylsiloxane) Barriers
To Define Microchannels in Paper. J. Immunol. Methods, 266, 1-5.
Cardoso, T. M., Garcia, P. T., & Coltro, W. K. (2015). Colorimetric determination of nitrite in clinical, food and
environmental samples using microfluidic devices stamped in paper platforms. Analytical Methods,
7(17), 7311-7317.
Cuendet, M., Hostettmann, K., Potterat, O., & Dyatmiko, W. (1997). Iridoid glucosides with free radical
scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4), 1144-1152.
Kondakçı, E., Özyürek, M., Güçlü, K., & Apak, R. (2013). Novel pro-oxidant activity assay for polyphenols,
vitamins C and E using a modified CUPRAC method. Talanta, 115, 583-589.
Fenton, E. M., Mascarenas, M. R., López, G. P., & Sibbett, S. S. (2008). Multiplex lateral-flow test strips
fabricated by two-dimensional shaping. ACS Applied Materials & Interfaces, 1(1), 124-129.
Garcia, E. J., Oldoni, T. L. C., Alencar, S. M. D., Reis, A., Loguercio, A. D., & Grande, R. H. M. (2012).
Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Brazilian
Dental Journal, 23(1), 22-27.
Ghiselli, A., Serafini, M., Maiani, G., Azzini, E., & Ferro-Luzzi, A. (1995). A fluorescence-based method for
measuring total plasma antioxidant capability. Free Radical Biology and Medicine, 18(1), 29-36.
Li, X., Tian, J., & Shen, W. (2010). Quantitative biomarker assay with microfluidic paper-based analytical
devices. Analytical and bioanalytical chemistry, 396(1), 495-501.
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods:
Impact on human health. Pharmacognosy Reviews, 4(8), 118.
Lu, Y., Shi, W., & Jiang, L. (2009). Rapid prototyping of paper-based microfluidics with wax for low-cost,
portable bioassay. Electrophoresis, 30, 1-4.
Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned paper as a platform for
inexpensive, low‐volume, portable bioassays. Angewandte Chemie International Edition, 46(8),
1318-1320.
Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., & Whitesides, G. M. (2008). FLASH: a rapid method for
prototyping paper-based microfluidic devices. Lab on a Chip, 8(12), 2146-2150.
Martinez, A. W., Phillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the Developing World:
Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 82(1), 3-10.

Oliveira, S. D., Souza, G. A. D., Eckert, C. R., Silva, T. A., Sobral, E. S., Fávero, O. A., FerreiraII, M. J. P.,
RomoffII, P., & BaaderI, W. J. (2014). Evaluation of antiradical assays used in determining the
antioxidant capacity of pure compounds and plant extracts. Química Nova, 37(3), 497-503.
Özyürek, M., Güçlü, K., & Apak, R. (2011). The main and modified CUPRAC methods of antioxidant
measurement. TrAC Trends in Analytical Chemistry, 30(4), 652-664.
Pyrzynska, K., & Pękal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the
antioxidant capacity of food samples. Analytical Methods, 5(17), 4288-4295
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity
applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine,
26(9-10), 1231-1237.
Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Koehler, K., Chailapakul, O., Henry, C. S., & Volckens, J.
(2012). Microfluidic paper-based analytical device for aerosol oxidative activity. Environmental Science
& Technology, 47(2), 932-940.
Steiner, M. S., Meier, R. J., Duerkop, A., & Wolfbeis, O. S. (2010). Chromogenic sensing of biogenic amines
using a chameleon probe and the red− green− blue readout of digital camera images. Analytical
chemistry, 82(20), 8402-8405.
Vella, S. J., Beattie, P., Cademartiri, R., Laromaine, A., Martinez, A. W., Phillips, S. T., Mirica, K. A., & Whitesides,
G. M. (2012). Measuring markers of liver function using a micropatterned paper device designed for
blood from a fingerstick. Analytical chemistry, 84(6), 2883-2891.
Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food
Chemistry, 44(3), 701-705.
Xie, J., & Schaich, K. M. (2014). Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for
antioxidant activity. Journal of Agricultural and Food Chemistry, 62(19), 4251-4260.

Downloads

Published

2018-11-20