Rhodamine 6G Bearing Thiosemicarbazide as Optical Chemosensor for Determination of Iron(III) ion

Authors

  • Sarayut Watchasit
  • Chomchai Suksai ภาควิชาเคมี คณะวิทยาศาสตร์ ม.บูรพา

Abstract

A new rhodamine-based optical chemorsensor L1 for the detection of Fe3+ ion in CH3CN was synthesized. It was found that in the presence of Fe3+ the color solution of L1 was changed from colorless to red-pink. This is due to the formation of spirolactam ring opening process which induced by Fe3+. Moreover, Fe3+ can enhance the fluorescence intensity at 556 nm through the energy transfer respect to the FRET process. From fluorescence titration, complex formation constant was calculated to be 3.33 × 105 M-1. The analytical detection limit of Iron(III) using this method is 0.004 ppm          Keywords :  FRET, iron (III), chemodosimeter, thiosemicarbarzide , 1,3,4-oxadiazole

References

Ajioka, R. S. & Kushner, J. P., (2003). Clinical consequences of iron overload in hemochromatosis homozygotes. Blood, 101, 3351-3353.
Andrew, N. C., (1999). Disorders of iron metabolism. The New England Journal of Medicine, 341, 1986-1995.
Bera, K., Das, A. K., Nag, M. & Basak, S., (2014). Development of a rhodamine–rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafishlLarvae. Analytical Chemistry, 86, 2740-2746.
Chen, X., Pradhan, T., Wang, F., Kim, J. S. and Yoon, J., (2012). Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews, 112, 1910-1956.
Chen, X., Zhao, Q., Zou, W., Qu, Q. & Wang, F., (2017). A colorimetric Fe3+ sensor based on an anionic poly
(3,4-propylenedioxythiophene) derivative. Sensors and Actuators B: Chemical, 244, 891-896.
Chereddy, N. R., Thennarasu, S. & Mandal, A. B., (2012). Incorporation of triazole into a quinoline-rhodamine conjugate imparts iron(III) selective complexation permitting detection at nanomolar levels. Dalton Transactions, 41, 11753-11759.
Ding, Y., Zhu, H., Zhang, X., Zhu, J. J. & Burda, C., (2013). Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chemical Communications, 49, 7797-7800.
Du, J., Hu, M., Fan, J. & Peng, X., (2012). Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chemical Society Reviews, 41, 4511-4535.
Fan, J., Hu, M., Zhan, P. & Peng, X., (2013). Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chemical Society Reviews, 42, 29-43.
Farrugia, K. N., Makuc, D., Podborska, A., Szacitowski, K., Plavec, J. & Magri, D. C., (2016). Colorimetric naphthalene‐based thiosemicarbazide anion chemosensors with an internal charge transfer mechanism. European Journal of Organic Chemistry, 2016, 4415–4422.
Ge, F., Ye, H., Zhang, H. & Zhao, B. X., (2013). A novel ratiometric probe based on rhodamine B and coumarin for selective recognition of Fe(III) in aqueous solution. Dyes and Pigments, 99, 661-665.
Goswami, S., Paul, S. & Manna, A., (2014). Rapid and ratiometric sensor for CAN (Ce4+) through metal assisted oxidation reaction-altered through bond energy transfer (TBET): development of low cost devices (TLC plate sticks). RSC Advances, 4, 43778-43784.
Gu, P. Y., Wang, Z. & Zhang, Q., (2016). Azaacenes as active elements for sensing and bio applications. Journal of Materials Chemistry B, 4, 7060-7074.
Haas, J. D. & Brownlie, T., (2001). Iron deficiency and eeduced work capacity: A critical review of the research to determine a causal relationship The Journal of Nutrition, 131, 676s-690s.
He, G., Zhang, X., He, C., Zhao, X. & Duan, C., (2010). Ratiometric fluorescence chemosensors for copper(II) and mercury(II) based on FRET systems. Tetrahedron, 66, 9762-9768.
Jun-jiea, L., Xian-feng, W., Dan-quna, H., Chang-jun, H., Huan-bao, F., Mei, Y. & Liang, Z., (2017). Colorimetric measurement of Fe3+ using a functional paper-based sensor based on catalytic oxidation of gold nanoparticles. Sensors and Actuators B: Chemical, 242, 1265-1271.
Kaur, K., Saini, R., Kumar, A., Luxami, V., Kaur, N., Singh, P. & Kumar, S., (2012). Chemodosimeters:
An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coordination Chemistry Reviews, 256, 1992-2028.
Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S. & Yoon, J., (2008). A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews, 37, 1465-1472.
Kumar, N., Bhalla, V. & Kumar, M., (2014). Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst, 139, 543-558.
Lee, J. W. & Helmann, J. D., (2006). The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature, 440, 363-367.
Lee, M. H., Giap, T. V., Kim, S. H., Lee, Y. H., Kang, C. & Kim, S. J., (2010). A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chemical Communications, 46, 1407-1409.
Liu, J. & Qian, Y., (2017). A novel naphthalimide-rhodamine dye: Intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes and Pigments, 136, 782-790.
Lohar, S., Banerjee, A., Sahana, A., Banik, A., Mukhopadhyay, S. K.& Das, D. A., (2013). A rhodamine–naphthalene conjugate as a FRET based sensor for Cr3+ and Fe3+ with cell staining application. Analytical Methods, 5, 442-445.
Piao, J., Lu, J., Zhou, X., Zhao, T. and Wu, X., (2014). A dansyl–rhodamine chemosensor for Fe(III) based on off–on FRET. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 475-480.
Qin, J. C., Yang, Z. Y., Wang, G. Q. & Li, C. R., (2015). FRET-based rhodamine–coumarin conjugate as a Fe3+ selective ratiometric fluorescent sensor in aqueous media. Tetrahedron Letters, 56, 5024-5029.
Sahoo, S. K., Sharma, D., Bera, R. K., Crisponi, G., & Callan, J. F., (2012). Iron(III) selective molecular and supramolecular fluorescent probes. Chemical Society Reviews, 41, 7195-7227.
Summer, J. P. & Kopelman R., (2005). Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. Analyst, 130, 528-533.
Wang, L., Fang, G. & Cao, D., (2015). A novel phenol-based BODIPY chemosensor for selective detection Fe3+ with colorimetric and fluorometric dual-mode. Sensors and Actuators B: Chemical, 207, 849-857.
Wu, K., Xiao, H., Wang, L., Yin, G., Quana, Y. & Wang, R., (2014). A rhodamine derivative as a highly sensitive chemosensor for iron(III). RSC Advaces, 4, 39984-39990.
Xu, S., Hao, Y. X., Sun, W., Fang, C. J., Lu, X., Li, M. N., Zhao, M., Peng, S. Q., & Yan, C. H., (2012). 2:1 Multiplexing function in a simple molecular system. Sensors, 12, 4421-4430.
Yang, X. F., Guo, X. Q. & Zhao, Y. B., (2002). Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta, 57, 883 - 890.
Yin, W., Cui, H., Yang, Z., Li, C., She, M., Yin, B., Li, J., Zhao, G., & Shi, Z., (2011). Facile synthesis and characterization of rhodamine-based colorimetric and “off–on” fluorescent chemosensor for Fe3+. Sensors and Actuators B: Chemical, 157, 675-680.
Yu, M., Shi, M., Chen, Z., Li, F., Li, X., Gao, Y., Xu, J., Yang, H., Zhou, Z., Yi, T. & Huang, C., (2008). Highly sensitive and fast responsive fluorescence turn‐on chemodosimeter for Cu2+ and its application in live cell imaging. Chemistry A European Journal, 14, 6892-6900.
Zhang, X., Shiraishi, Y. & Hirai, T., (2008). Fe(III)- and Hg(II)-selective dual channel fluorescence of a rhodamine–azacrown ether conjugate. Tetrahedron Letters, 49, 4178-4181.
Zhang, X., Xiao, Y. & Qian, X., (2008). A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angewandte Chemie International Edition, 47, 8025-8029.
Zhu, M., Yuan, M., Liu, X., Xu, J., Lu, J., Huang, C., Liu, H., Li, Y., Wang, S. & Zhu, D., (2008). Visible near-infrared chemosensor for mercury ion. Organic Letters, 10, 1481-1484.

Downloads

Published

2018-08-14