Development of Nanofibers Containing Rhodamine B as Colorimetric Chemosensor for Cu2+ Determination
Abstract
In this work, a visual colorimetric sensor based on cellulose acetate nanofibers incorporated with rhodamine B hydrazone derivative L1 was successfully prepared via electrospinning technology. Morphology of the nanofibrous sensor was characterized by SEM, which showed that the uniform nanofibers having diameter of 92 ± 24 nm and formed a non-woven mat. The prepared colorimetric nanofibers showed high sensitivity towards Cu2+due to the color change from pale pink to intense pink which confirmed the formation of CuL1 complex ion in L1-CA nanofibers. Upon the optimal conditions of amount of L1 at 25 mg, pH solution at 5.0 and response time of 20 min, the detection limit for Cu2+ with L1-CA nanofibers was found to be 1.62 mg L-1. Keywords : nanofibers, cellulose acetate, copper(II)ion, rhodamine B, electrospinningReferences
Ahuja, A., Dev, K., Tanwar, R. S., Selwal, K. K., & Tyagi, P. K. (2015). Copper mediated neurological disorder: Visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. Journal of Trace Elements in Medicine and Biology, 29, 11-23.
Alia, R., Elshaarawy, R. F.M., & Saleh, S. M. (2017). Turn-on ratiometric fluorescence sensor film for ammonia based on salicylaldehyde-ionic liquid. Journal of Environmental Chemical Engineering, 5, 4813 - 4818.
Busaranon, K., Suntornsuk, W., & Suntornsuk, L. (2006). Comparison of UV spectrophotometric method and high performance liquid chromatography for the analysis of flunarizine and its application for the dissolution test. Journal of Pharmaceutical and Biomedical Analysis, 41, 158–164.
Chandran, R., Chevva, H., Zeng, Z., Liu, Y., Zhang, W., Wei, J., & LaJeunesse, D. (2018). Solid-state synthesis of silver nanowires using biopolymer thin films. Materials Today Nano, 1, 22-28.
Chen, B.-Y., Kuo, C.-C., Huang, Y.-S., Lu, S.-T., Liang, F.-C., & Jiang, D.-H. (2015). Novel Highly selective and reversible chemosensors based on dual-ratiometric fluorescent electrospun nanofibers with pH- and Fe3+-Modulated Multicolor Fluorescence Emission. ACS Applied Materials & Interfaces, 7, 2797-2808.
Chen, X., Pradhan, T., Wang, F., Kim, J. S., & Yoon, J. (2012). Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews, 112, 1910-1956.
Crichton, R. R., Dexter, D. T., & Ward, R. J. (2008). Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies. Coordination Chemistry Reviews, 252, 1189-1199.
Eftekhari, A. (2003). pH sensor based on deposited film of lead oxide on aluminum substrate electrode. Sensors and Actuators B: Chemical, 88, 234-238.
Eftekhari, E., Wang, W., Li, X., A, N., Wu, Z., Klein, R., Cole, I. S., & Li, Q. (2017). Picomolar reversible Hg(II) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals. Sensors and Actuators B: Chemical, 240, 204-211.
Flores, E., Pizarro, J., Godoy, F., Segura, R., Gómez, A., Agurto, N., & Sepúlveda, P. (2017). An electrochemical sensor for the determination of Cu(II) using a modified electrode with ferrocenyl crown ether compound by square wave anodic stripping voltammetry. Sensors and Actuators B: Chemical, 251, 433-439.
Fu, X.-C., Wu, J., Xie, C.-G., Zhong, Y. & Liu, J. –H. (2013) Rhodamine-based fluorescent probe immobilized on mesoporous silica microspheres with perpendicularly aligned mesopore channels for selective detection of trace mercury(II) in water. Anal. Methods, 5, 2615-2622.
Hu, L., Yan, X. W., Li, Q., Zhang, X. J., & Shan, D. (2017). Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition. Journal of Hazardous Materials, 329, 205-210.
Jensen, P. Y., Bonander, N., Møller, L. B., & Farver, O. (1999). Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein. Biochimica et Biophysica Acta, 1434, 103-113.
Rull-Barrull, J., Grognec, M. H. E., & Felpin, F. –X. (2016) Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chemical Communications, 52, 2525-2528.
Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S., & Yoon, J. (2008). A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews, 37, 1465-1472.
Li, M., Li, X., Xiao, H.-N., & James, T. D. (2017). Fluorescence Sensing with Cellulose-Based Materials. Chemistry Open, 6, 685 – 696.
Liu, Y., Liang, P., & Guo, L. (2005). Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta, 68, 25-30.
McDonagh, C., Burke, C. S., & MacCraith, B. D. (2008). Optical chemical sensors. Chemical Reviews, 108,
400-422.
Miotto, M. C., Rodriguez, E. E., Valiente-Gabioud, A. A., Torres-Monserrat, V., Binolfi, A., Quintanar, L., Zweckstetter, M., Griesinger, C., & Fernández, C. O. (2014). Site-Specific Copper-Catalyzed Oxidation of α-Synuclein: Tightening the Link between Metal Binding and Protein Oxidative Damage in Parkinson’s Disease. Inorganic Chemistry, 53, 4350-4358.
Nunes, C. J., Borges, B. E., Nakao, L. S., Peyroux, E., Hardré, R., Faure, B., Réglier, M., Giorgi, M., Prieto, M. B., Oliveira, C. C., & Da Costa Ferreira, A. M. (2015). Reactivity of dinuclear copper(II) complexes towards melanoma cells: Correlation with its stability, tyrosinase mimicking and nuclease activity. Journal of Inorganic Biochemistry, 149, 49-58.
O'Halloran, T. V., & Culotta, V. C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. The Journal of Biological Chemistry, 275, 25057-25060.
Ozay, H., & Ozay, Ozgur. (2013) Rhodamine based reusable and colorimetric naked-eye hydrogel sensors for Fe3+ ion. Chem. Eng. J., 232, 364-371.
Piriya V.S, A., Joseph, P., Daniel S.C.G, K., Lakshmanan, S., Kinoshita, T., & Muthusamy, S. (2017). Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering: C, 78, 1231-1245.
Pourreza, N., & Hoveizavi, R. (2005). Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Analytica Chimica Acta, 549, 124-128.
Saithongdee, A., Praphairaksit, N., & Imyim, A. (2014). Electrospun curcumin-loaded zein membrane for iron(III) ions sensing. Sensors and Actuators B: Chemical, 202, 935-940.
Strausak, D., Mercer, J. F. B., Dieter, H. H., Stremmel, W., & Multhaup, G. (2001). Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Research Bulletin, 55,
175-185.
Telianidis, J., Hung, Y. H., Materia, S., & La Fontaine, S. (2013). Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Frontiers in Aging Neuroscience, 5, 1-17.
Terra, I. A. A., Mercante, L. A., Andre, R. S., & Correa, D. S. (2017). Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors, 7, 1-14.
Tokman, N. (2007). The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry. Journal of Hazardous Materials, 143, 87-94.
Wang, L., Ye, D., Li, W., Liu, Y., Li, L., Zhang, W., & Ni, L. (2017). Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 291–297.
Wang, W., Yang, Q., Sun, L., Wang, H., Zhang, C., Fei, X., Sun, M., & Li, Y. (2011). Preparation of fluorescent
nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning. Journal of Hazardous Materials, 194, 185–192.
World Health Organization (2017). Guidelines for drinking-water quality: fourth edition incorporating the first
addendum. Brazil
Wu, W.-C., & Lai, H.-J. (2016). Preparation of thermo-responsive electrospun nanofibers containing rhodamine-based fluorescent sensor for Cu2+ detection. Journal of Polymer Research, 23, 223-226.
Xiang, Y., Tong, A., Jin, P., & Ju, Y. (2006). New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity. Organic Letters, 8, 2863-2866.
Zhang, X., Zhang, W., Li, C., & Li, Y. (2018) Facile self-assembly of pyromellitic acid modified graphene oxide
sheets into rhodamine B for highly selective luminescent sensing of Fe3+. Journal of Alloys Compounds, 749, 503-510
Alia, R., Elshaarawy, R. F.M., & Saleh, S. M. (2017). Turn-on ratiometric fluorescence sensor film for ammonia based on salicylaldehyde-ionic liquid. Journal of Environmental Chemical Engineering, 5, 4813 - 4818.
Busaranon, K., Suntornsuk, W., & Suntornsuk, L. (2006). Comparison of UV spectrophotometric method and high performance liquid chromatography for the analysis of flunarizine and its application for the dissolution test. Journal of Pharmaceutical and Biomedical Analysis, 41, 158–164.
Chandran, R., Chevva, H., Zeng, Z., Liu, Y., Zhang, W., Wei, J., & LaJeunesse, D. (2018). Solid-state synthesis of silver nanowires using biopolymer thin films. Materials Today Nano, 1, 22-28.
Chen, B.-Y., Kuo, C.-C., Huang, Y.-S., Lu, S.-T., Liang, F.-C., & Jiang, D.-H. (2015). Novel Highly selective and reversible chemosensors based on dual-ratiometric fluorescent electrospun nanofibers with pH- and Fe3+-Modulated Multicolor Fluorescence Emission. ACS Applied Materials & Interfaces, 7, 2797-2808.
Chen, X., Pradhan, T., Wang, F., Kim, J. S., & Yoon, J. (2012). Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews, 112, 1910-1956.
Crichton, R. R., Dexter, D. T., & Ward, R. J. (2008). Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies. Coordination Chemistry Reviews, 252, 1189-1199.
Eftekhari, A. (2003). pH sensor based on deposited film of lead oxide on aluminum substrate electrode. Sensors and Actuators B: Chemical, 88, 234-238.
Eftekhari, E., Wang, W., Li, X., A, N., Wu, Z., Klein, R., Cole, I. S., & Li, Q. (2017). Picomolar reversible Hg(II) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals. Sensors and Actuators B: Chemical, 240, 204-211.
Flores, E., Pizarro, J., Godoy, F., Segura, R., Gómez, A., Agurto, N., & Sepúlveda, P. (2017). An electrochemical sensor for the determination of Cu(II) using a modified electrode with ferrocenyl crown ether compound by square wave anodic stripping voltammetry. Sensors and Actuators B: Chemical, 251, 433-439.
Fu, X.-C., Wu, J., Xie, C.-G., Zhong, Y. & Liu, J. –H. (2013) Rhodamine-based fluorescent probe immobilized on mesoporous silica microspheres with perpendicularly aligned mesopore channels for selective detection of trace mercury(II) in water. Anal. Methods, 5, 2615-2622.
Hu, L., Yan, X. W., Li, Q., Zhang, X. J., & Shan, D. (2017). Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition. Journal of Hazardous Materials, 329, 205-210.
Jensen, P. Y., Bonander, N., Møller, L. B., & Farver, O. (1999). Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein. Biochimica et Biophysica Acta, 1434, 103-113.
Rull-Barrull, J., Grognec, M. H. E., & Felpin, F. –X. (2016) Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chemical Communications, 52, 2525-2528.
Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S., & Yoon, J. (2008). A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews, 37, 1465-1472.
Li, M., Li, X., Xiao, H.-N., & James, T. D. (2017). Fluorescence Sensing with Cellulose-Based Materials. Chemistry Open, 6, 685 – 696.
Liu, Y., Liang, P., & Guo, L. (2005). Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta, 68, 25-30.
McDonagh, C., Burke, C. S., & MacCraith, B. D. (2008). Optical chemical sensors. Chemical Reviews, 108,
400-422.
Miotto, M. C., Rodriguez, E. E., Valiente-Gabioud, A. A., Torres-Monserrat, V., Binolfi, A., Quintanar, L., Zweckstetter, M., Griesinger, C., & Fernández, C. O. (2014). Site-Specific Copper-Catalyzed Oxidation of α-Synuclein: Tightening the Link between Metal Binding and Protein Oxidative Damage in Parkinson’s Disease. Inorganic Chemistry, 53, 4350-4358.
Nunes, C. J., Borges, B. E., Nakao, L. S., Peyroux, E., Hardré, R., Faure, B., Réglier, M., Giorgi, M., Prieto, M. B., Oliveira, C. C., & Da Costa Ferreira, A. M. (2015). Reactivity of dinuclear copper(II) complexes towards melanoma cells: Correlation with its stability, tyrosinase mimicking and nuclease activity. Journal of Inorganic Biochemistry, 149, 49-58.
O'Halloran, T. V., & Culotta, V. C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. The Journal of Biological Chemistry, 275, 25057-25060.
Ozay, H., & Ozay, Ozgur. (2013) Rhodamine based reusable and colorimetric naked-eye hydrogel sensors for Fe3+ ion. Chem. Eng. J., 232, 364-371.
Piriya V.S, A., Joseph, P., Daniel S.C.G, K., Lakshmanan, S., Kinoshita, T., & Muthusamy, S. (2017). Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering: C, 78, 1231-1245.
Pourreza, N., & Hoveizavi, R. (2005). Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Analytica Chimica Acta, 549, 124-128.
Saithongdee, A., Praphairaksit, N., & Imyim, A. (2014). Electrospun curcumin-loaded zein membrane for iron(III) ions sensing. Sensors and Actuators B: Chemical, 202, 935-940.
Strausak, D., Mercer, J. F. B., Dieter, H. H., Stremmel, W., & Multhaup, G. (2001). Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Research Bulletin, 55,
175-185.
Telianidis, J., Hung, Y. H., Materia, S., & La Fontaine, S. (2013). Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Frontiers in Aging Neuroscience, 5, 1-17.
Terra, I. A. A., Mercante, L. A., Andre, R. S., & Correa, D. S. (2017). Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors, 7, 1-14.
Tokman, N. (2007). The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry. Journal of Hazardous Materials, 143, 87-94.
Wang, L., Ye, D., Li, W., Liu, Y., Li, L., Zhang, W., & Ni, L. (2017). Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 291–297.
Wang, W., Yang, Q., Sun, L., Wang, H., Zhang, C., Fei, X., Sun, M., & Li, Y. (2011). Preparation of fluorescent
nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning. Journal of Hazardous Materials, 194, 185–192.
World Health Organization (2017). Guidelines for drinking-water quality: fourth edition incorporating the first
addendum. Brazil
Wu, W.-C., & Lai, H.-J. (2016). Preparation of thermo-responsive electrospun nanofibers containing rhodamine-based fluorescent sensor for Cu2+ detection. Journal of Polymer Research, 23, 223-226.
Xiang, Y., Tong, A., Jin, P., & Ju, Y. (2006). New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity. Organic Letters, 8, 2863-2866.
Zhang, X., Zhang, W., Li, C., & Li, Y. (2018) Facile self-assembly of pyromellitic acid modified graphene oxide
sheets into rhodamine B for highly selective luminescent sensing of Fe3+. Journal of Alloys Compounds, 749, 503-510
Downloads
Published
2018-08-01
Issue
Section
Research Article