Indicator Displacement Assay Approach for Detection of Pyrophosphate Anion
Abstract
Pyrophosphate anion (P2O74- or PPi) plays an important role in many biological processes. In particular, PPi participates in adenosine triphosphate hydrolysis and involves in deoxy ribonucleic acid polymerase reactions. Moreover, the amount of PPi is recently acts as biomarker for patients with chrondocalcinosis which have been shown to have high synovial fluid PPi level. Therefore, discriminate sensing of PPi under physiological conditions remains a significant challenge. In this review, two types of indicator displacement assay (IDAs) approach are described, namely, chromogenic and fluorogenic indicator displacement assay. Keywords : pyrophosphate anion, indicator displacement assay, optical chemosensor, chromogenic indicator, fluorescence indicatorReferences
Berchmans, S., Issa, T. B., & Singh, P. (2012). Determination of inorganic phosphate by electroanalytical methods: A review. Analytica Chimica Acta, 729, 7-20.
Christoffersen, M. R., & Christoffersen, J. (2003). Effects of a bisphosphonate (EHDP) on growth, formation, and dissolution of calcium pyrophosphate crystals. Crystal Growth & Design, 3, 79-82.
Deng, J., Jiang, Q., Wang, Y., Yang, L., Yu, P. & Mao, L. (2013). Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate Ion. Analytical Chemistry, 85, 9409-9415.
Du, J., Wang, X., Jia, M., Li, T., Mao, J., & Guo, Z. (2008). Recognition of phosphate anions in aqueous solution by a dinuclear zinc(II) complex of a cyclen-tethered terpyridine ligand. Inorganic Chemistry Communications, 11, 999-1002.
Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate detection in water by fluorescence competition assays: Inducing selectivity through the choice of the indicator.Angewandte Chemie International Edition, 41, 3811–3814.
Hargrove, A. E., Nieto, S., Zhang, T., Sessler, J. L., & Anslyn, E. V. (2011). Artificial receptors for the recognition of phosphorylated molecules. Chemical Reviews, 111, 6603–6782.
Jensen, W. B. (1978). The Lewis acid-base definitions: A status report. Chemical Reviews, 78, 1-22.
Katano, H., Watanabe, H., Takakuwa, M., Maruyama, C., & Hamano, Y. (2013). Colorimetric determination of pyrophosphate anion and its application to adenylation enzyme assay. Analytical Sciences, 29, 1095-1098.
Kaur, S., Hwang, H., Lee, J. T., & Lee, C. H. (2013). Displacement-based, chromogenic calix[4]pyrrole indicator
complex for selective sensing of pyrophosphate anion. Tetrahedron Letters, 54, 3744–3747.
Kim, S., Eom, M. S., Kim, S. K., Seo, S. H. & Han, M. S. (2013). A highly sensitive gold nanoparticle-based colorimetric probe for pyrophosphate using a competition assay approach. Chemical Communication, 49, 152-154.
Lee, D. H., Kim, S. Y., & Hong, J. I. (2007). Quencher–fluorophore ensemble for detection of pyrophosphate in water. Tetrahedron Letters, 48, 4477–4480.
Lee, J. H., Jeong, A. R., Jung, J. H., Park, C. M., & Hong, J. I. (2011). A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates. Journal of Organic Chemistry, 76, 417-423.
Lee, S., Yuen, K. K. Y., Jolliffe, K. A., & Yoon, J. (2015). Fluorescent and colorimetric chemosensors for pyrophosphate. Chemical Society Reviews, 44, 1749-1762.
Lipscomb, W. N., & Sträter, N. (1996). Recent advances in zinc enzymology. Chemical Reviews, 96, 2375–2434.
Liu, X., Ngo, H. T., Ge, Z., Butler, S. J., & Jolliffe, K. A. (2013). Tuning colourimetric indicator displacement assays for naked-eye sensing of pyrophosphate in aqueous media. Chemical Science, 4, 1680–1686.
Martínez, M. R., & Sancenon, F., (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews, 103, 4419-4476.
Morgan, B. P., He, S., & Smith, R. C. (2007). Dizinc enzyme model/complexometric indicator pairs in indicator displacement assays for inorganic phosphates under physiological conditions. Inorganic Chemistry, 46, 9262-9266.
Nguyen, B. T., & Anslyn, E. V. (2006). Indicator displacement assays. Coordination Chemistry Reviews, 250,
3118–3127.
Nishizawa, S., Kato, Y., & Teramae, N. (1999). Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. Journal of the American Chemical Society, 121(40), 9463–9464.
Oh, D. J. & Ahn, K. H. (2008). Fluorescent sensing of IP3 with a trifurcate Zn(II)-containing chemosensing ensemble system. Organic Letters, 10, 3539-3452.
Oh, D. J., Han, M. S., & Ahn, K. H. (2007). Metal-containing trifurcate chemosensing ensemble for phytate. Supramolecular Chemistry, 19, 315-320.
Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112, 2739-2779.
Silva, P. D., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 97, 1515-1566.
Sokkalingam, P., Kim, D. S., Hwang, H., Sessler, J. L., & Lee, C. H. (2012). A dicationic calix[4]pyrrole derivative and its use for the selective recognition and displacement-based sensing of pyrophosphate. Chemical Science, 3, 1819–1824.
Steed, J. W. & Atwood, J. L. 2002. Supramolecular chemistry. John Wiley & Sons Ltd., England.
Suksai, C., & Tuntulani. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32, 192-202.
Surman, A. J., Bonnet, C. S., Lowe, M. P., Kenny, G. D., Bell, J. D., Toth, E., & Vilar, R. (2011). A pyrophosphate-responsive gadolinium(III) MRI contrast agent. Chemistry - A European Journal, 17, 223-230.
Svane, S., Kjeldsen, F. McKee, V., & McKenzi, C. J. (2015). The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors. Dalton Transactions, 44, 11877–11886.
Tong, L., Chen, Z., Jiang, Z. Y., Sun, M.M., Li, L., Liu, J., tang, B. (2015). Fluorescent sensing of pyrophosphate anion in synovial fluid based on DNA-attached magnetic nanoparticles. Biosensors and Bioelectronics, 72, 51-55.
Watchasit, S., Kaowliew, A., Suksai, C., Tuntulani, T., Ngeontae, W., & Pakawatchai, C. (2010). Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Letters, 51, 3398–3402.
Watchasit, S., Suktanarak, P., Suksai, C., Ruangpornvisuti, V., & Tuntulani, T. (2014). Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(II) complex under an indicator displacement assay approach. Dalton Transactions, 43, 14701–14709.
Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching old indicators new tricks. Accounts of Chemical Research, 34, 963-972.
Yoza, N., Akazaki, I., Nakazato, T., Ueda, N., Kodama, H., & Tateda, A. (1991). High-performance liquid chromatographic determination of pyrophosphate in the presence of a 20,000-fold excess of orthophosphate. Analytical Biochemistry, 199, 279-285.
Yuen, K. K. Y., & Jolliffe, K. A. (2013). Bis[zinc(II)dipicolylamino]-functionalised peptides as high affinity receptors for pyrophosphate ions in water. Chemical communications, 49, 4824-4826.
Zhang, T., & Anslyn, E. V., (2007). Using an indicator displacement assay to monitor glucose oxidase activity in blood serum. Organic Letters, 9, 1627-1629.
Christoffersen, M. R., & Christoffersen, J. (2003). Effects of a bisphosphonate (EHDP) on growth, formation, and dissolution of calcium pyrophosphate crystals. Crystal Growth & Design, 3, 79-82.
Deng, J., Jiang, Q., Wang, Y., Yang, L., Yu, P. & Mao, L. (2013). Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate Ion. Analytical Chemistry, 85, 9409-9415.
Du, J., Wang, X., Jia, M., Li, T., Mao, J., & Guo, Z. (2008). Recognition of phosphate anions in aqueous solution by a dinuclear zinc(II) complex of a cyclen-tethered terpyridine ligand. Inorganic Chemistry Communications, 11, 999-1002.
Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate detection in water by fluorescence competition assays: Inducing selectivity through the choice of the indicator.Angewandte Chemie International Edition, 41, 3811–3814.
Hargrove, A. E., Nieto, S., Zhang, T., Sessler, J. L., & Anslyn, E. V. (2011). Artificial receptors for the recognition of phosphorylated molecules. Chemical Reviews, 111, 6603–6782.
Jensen, W. B. (1978). The Lewis acid-base definitions: A status report. Chemical Reviews, 78, 1-22.
Katano, H., Watanabe, H., Takakuwa, M., Maruyama, C., & Hamano, Y. (2013). Colorimetric determination of pyrophosphate anion and its application to adenylation enzyme assay. Analytical Sciences, 29, 1095-1098.
Kaur, S., Hwang, H., Lee, J. T., & Lee, C. H. (2013). Displacement-based, chromogenic calix[4]pyrrole indicator
complex for selective sensing of pyrophosphate anion. Tetrahedron Letters, 54, 3744–3747.
Kim, S., Eom, M. S., Kim, S. K., Seo, S. H. & Han, M. S. (2013). A highly sensitive gold nanoparticle-based colorimetric probe for pyrophosphate using a competition assay approach. Chemical Communication, 49, 152-154.
Lee, D. H., Kim, S. Y., & Hong, J. I. (2007). Quencher–fluorophore ensemble for detection of pyrophosphate in water. Tetrahedron Letters, 48, 4477–4480.
Lee, J. H., Jeong, A. R., Jung, J. H., Park, C. M., & Hong, J. I. (2011). A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates. Journal of Organic Chemistry, 76, 417-423.
Lee, S., Yuen, K. K. Y., Jolliffe, K. A., & Yoon, J. (2015). Fluorescent and colorimetric chemosensors for pyrophosphate. Chemical Society Reviews, 44, 1749-1762.
Lipscomb, W. N., & Sträter, N. (1996). Recent advances in zinc enzymology. Chemical Reviews, 96, 2375–2434.
Liu, X., Ngo, H. T., Ge, Z., Butler, S. J., & Jolliffe, K. A. (2013). Tuning colourimetric indicator displacement assays for naked-eye sensing of pyrophosphate in aqueous media. Chemical Science, 4, 1680–1686.
Martínez, M. R., & Sancenon, F., (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews, 103, 4419-4476.
Morgan, B. P., He, S., & Smith, R. C. (2007). Dizinc enzyme model/complexometric indicator pairs in indicator displacement assays for inorganic phosphates under physiological conditions. Inorganic Chemistry, 46, 9262-9266.
Nguyen, B. T., & Anslyn, E. V. (2006). Indicator displacement assays. Coordination Chemistry Reviews, 250,
3118–3127.
Nishizawa, S., Kato, Y., & Teramae, N. (1999). Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. Journal of the American Chemical Society, 121(40), 9463–9464.
Oh, D. J. & Ahn, K. H. (2008). Fluorescent sensing of IP3 with a trifurcate Zn(II)-containing chemosensing ensemble system. Organic Letters, 10, 3539-3452.
Oh, D. J., Han, M. S., & Ahn, K. H. (2007). Metal-containing trifurcate chemosensing ensemble for phytate. Supramolecular Chemistry, 19, 315-320.
Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112, 2739-2779.
Silva, P. D., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 97, 1515-1566.
Sokkalingam, P., Kim, D. S., Hwang, H., Sessler, J. L., & Lee, C. H. (2012). A dicationic calix[4]pyrrole derivative and its use for the selective recognition and displacement-based sensing of pyrophosphate. Chemical Science, 3, 1819–1824.
Steed, J. W. & Atwood, J. L. 2002. Supramolecular chemistry. John Wiley & Sons Ltd., England.
Suksai, C., & Tuntulani. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32, 192-202.
Surman, A. J., Bonnet, C. S., Lowe, M. P., Kenny, G. D., Bell, J. D., Toth, E., & Vilar, R. (2011). A pyrophosphate-responsive gadolinium(III) MRI contrast agent. Chemistry - A European Journal, 17, 223-230.
Svane, S., Kjeldsen, F. McKee, V., & McKenzi, C. J. (2015). The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors. Dalton Transactions, 44, 11877–11886.
Tong, L., Chen, Z., Jiang, Z. Y., Sun, M.M., Li, L., Liu, J., tang, B. (2015). Fluorescent sensing of pyrophosphate anion in synovial fluid based on DNA-attached magnetic nanoparticles. Biosensors and Bioelectronics, 72, 51-55.
Watchasit, S., Kaowliew, A., Suksai, C., Tuntulani, T., Ngeontae, W., & Pakawatchai, C. (2010). Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Letters, 51, 3398–3402.
Watchasit, S., Suktanarak, P., Suksai, C., Ruangpornvisuti, V., & Tuntulani, T. (2014). Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(II) complex under an indicator displacement assay approach. Dalton Transactions, 43, 14701–14709.
Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching old indicators new tricks. Accounts of Chemical Research, 34, 963-972.
Yoza, N., Akazaki, I., Nakazato, T., Ueda, N., Kodama, H., & Tateda, A. (1991). High-performance liquid chromatographic determination of pyrophosphate in the presence of a 20,000-fold excess of orthophosphate. Analytical Biochemistry, 199, 279-285.
Yuen, K. K. Y., & Jolliffe, K. A. (2013). Bis[zinc(II)dipicolylamino]-functionalised peptides as high affinity receptors for pyrophosphate ions in water. Chemical communications, 49, 4824-4826.
Zhang, T., & Anslyn, E. V., (2007). Using an indicator displacement assay to monitor glucose oxidase activity in blood serum. Organic Letters, 9, 1627-1629.
Downloads
Published
2017-10-25
Issue
Section
Scientific Article