Molecular Cloning and Docking of Two Glycosyltransferases, Os02g11110 and Os11g38650, from Oryza sativa L.

Authors

  • Paphitchaya Naree Naresuan University
  • Panatda Jannoey
  • Krit Tantanarat

Abstract

Glycosyltransferase family 1 (GT1) or UGTs are the largest group of enzymes in plant kingdom. UGT transfers sugar moieties from UDP-sugar to specific acceptors for glycoside synthesis via glycosylation to enhance their solubility and stability, and modify biological activities. Glycosides have been used as antitumor drugs, cardiac-related drugs, and antifungal and antibacterial agents. Up to now, an understanding of enzyme characteristics has been limited since a few specific acceptors for UGTs were reported. For example, 220 putative genes of UGT in rice have not been characterized. In this study, two rice (Oryza sativa L.) UGTs, namely OSUGT02 (Os02g11110) and OsUGT11 (Os11g38650), were cloned into E.coli BL21 Star™ (DE3), expressed and purified using His-tag column. Protein structure was predicted by I-TASSER. OsUGT02 showed 30% identity with LOC_Os04g12970.1 (PDB ID: 5tmb) from O. sativa. OsUGT11 showed 50% identity with UGT72B1 (PDB ID: 2vg8) from Arabidopsis thaliana. Molecular docking, which was performed by SwissDock to predict ligand-enzyme binding, showed that UDP-glucose and enzyme complex was formed through PSPG motif. Keywords: GT1, UGT, glycoside, UDP-glucose, Oryza sativa

Author Biography

Paphitchaya Naree, Naresuan University

Department of Biochemistry, faculty of medical science

References

Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. & Imberty, A. (2006). Structures and mechanisms of glycosyltransferase. Glycobiology, 16(2), 29R-37R.
Bowles, D. (2002). A multigene family of glycosyltransferases in a model plant, Arabidopsis thaliana. Biochemical Society Transactions, 30(2),301-6.
Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(Database issue), 233-238.
Cao, P. J., Bartley, L. E., Jung, K. H., & Ronald, P. C. (2008). Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Molecular Plant, 1(5), 858-877.
Francisco, V., Figueirinha, A., Costa, G., Liberal, J., Lopes, M. C., García-Rodríguez, C. (2014).
Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. Journal of Functional Foods, 10, 436-443.
Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(Web Server issue), 270-277.
Hong, B. S., Kim, J. H., Kim, N. Y., Kim, B. G., Chong, Y. & Ahn, J. H. (2007). Characterization of uridine-diphosphate dependent flavonoid glucosyltransferase from Oryza sativa. Journal of Biochemistry and Molecular Biology, 40(6), 870-874.
Kim, I. A., Heo, J.O., Chang, K. S., Lee, S. A., Lee, M.H., Lim, C. E., & Lim, J. (2010). Overexpression and inactivation of UGT73B2 modulate tolerance to oxidative stress in Arabidopsis. Journal of Plant Biology, 53(3), 233-239.
Kim, B.G., Kim, N. Y., Kim, J. H., Akimitsu, K., Chong, Y., & Ahn, J.H. (2009). Flavonoid O-diglucosyltransferase from rice: molecular cloning and characterization. Journal of Plant Biology, 52(1), 41-48.
Ko, J. H., Kim, B. G., Hur, H. G., Lim, Y. & Ahn, J. H. (2006). Molecular cloning, expression and characterization of a glycosyltransferase from rice. Plant Cell Reports, 25(7), 741-746.
Ko, J. H., Kim, B. G., Kim, J. H., Kim, H., Lim, C. E., Lim, J., et al. (2008). Four glucosyltransferases from rice: cDNA cloning, expression, and characterization. Journal of Plant Physiology, 165(4), 435-444.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.
Lairson, L.L., Henrissat, B., Davies, G.J., & Withers, S.G. (2008). Glycosyltransferases: structures, functions, and mechanisms. Annual Review of Biochemistry, 77, 521-555.
Lim, E.K., Jackson, R.G. & Bowles, D.J. (2005). Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Letters, 579(13), 2802-2806.
Rascon-Valenzuela, L. A., Velazquez, C., Garibay-Escobar, A., Vilegas, W., Medina-Juarez, L.A., Gamez-Meza, N. & Robles-Zepeda, R.E. (2016). Apoptotic activities of cardenolide glycosides from Asclepias subulata. Journal of Ethnopharmacology, 193, 303-311.
Schwab, W. (2003). Metabolome diversity: too few genes, too many metabolites? Phytochemistry, 62(6),
837-849.
Shao, H., He, X., Achnine, L., Blount, J. W., Dixon, R. A., & Wang, X. (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell, 17(11), 3141-3154.
Vogt, T., & Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science, 5(9), 380-386.
Yonekura-Sakakibara, K. & Hanada, K. (2011). An evolutionary view of functional diversity in family 1 glycosyltransferases. The Plant Journal, 66(1), 182-193.
Zhang, T., Liang, J., Wang, P., Xu, Y., Wang, Y., Wei, X. & Fan, M. (2016). Purification and characterization of a novel phloretin-2'-O-glycosyltransferase favoring phloridzin biosynthesis. Scientific Reports, 6, 35274.
Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.
Zhou, Z., Han, N., Liu, Z., Song, Z., Wu, P., Shao, J., et al. (2016). The antibacterial activity of
syringopicroside, its metabolites and natural analogues from Syringae Folium. Fitoterapia, 110,
20-25.

Downloads

Published

2017-08-04

Issue

Section

บทความวิจัยจากการประชุมวิชาการระดับชาติ"วิทยาศาสตร์วิจัย"ครั้งที่ 9