Bacterial Lactic Acid Production for Bioplastic Industry

Authors

Abstract

The environmental and economic challenges have provoked the society to partially substitute the petrochemical-based polymers with the biodegradable ones. Polylactic acid (PLA), made from polymerization of lactic acid, is an eco-friendly biodegradable plastic. PLA has potential for use in a wide range of applications. Those include packaging, medical, agriculture, transportation, building, and electronics. As aforementioned, the substituting PLA in the plastic industry has generated the market demand for lactic acid, the PLA building block. Lactic acid can be produced either by chemical synthesis or microbial fermentation. Nonetheless, an optical purity of lactic acid is mandatory in PLA synthesis; therefore, microbial fermentation with the certain strains is considered suitably. Many wild-type and engineered microbes that were capable of producing lactic acid both D- and L-isomers have long been reported in many literatures. Those, for example, include lactic acid bacteria (LAB), Escherichia coli, and Corynebacterium glutamicum. Among those, Bacillus and Sporolactobacillus showed the great potential to produce lactic acid with high production rate and optical purity. Herein, we summarized the list of lactic acid producing microbes that showed the industrial potential. Also, the screening and selection of the industrial strains and the fermentation methods that provided the improved lactic acid production performance were addressed. Keywords : lactic acid, lactic acid bacteria, bioplastic, polylactic acid

Author Biography

Vasana Tolieng, chulalongkorn university

The institute of biotechnology and genetic engineering

References

Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., Hanada, K., Shibata, K. & Sonomoto, K. (2011a). Efficient homofermentative l-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Applied and Environmental Microbiology, 77, 1892–1895.
Abdel-Rahman, M.A., Tashiro, Y., Zendo, T., Shibata, K. & Sonomoto, K. (2011b).Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid. Applied and Environmental Microbiology, 89, 1039-1049.
Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., & Sonomoto, K. (2013). Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Advances, 3(22), 8437-8445.
Bai, Z., Gao, Z., Sun, J., Wu, B. and He, B. (2016). d-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresource Technology, 207, 346-352.
Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E. (Eds.)( 2006). The prokaryotes : A Hand Book on the Biology of Bacteria. vol. 4 (3rd ed.). New York: Springer.
Gao, T., Wong, Y., Ng, C. & Ho K. (2012). L-Lactic acid production by Bacillus subtilis MUR1. Bioresource Technology, 121, 105–110.
Grand view research. (2017). Lactic Acid Market & Polylactic Acid (PLA) Market, Industry Report 2025 Retrieved September 8, 2017, from http://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market
Hofvendahl, K., & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and microbial technology, 26(2), 87-107.
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M. & Desobry, S. (2010). Poly-Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9, 552-571.
Jiang, T., Qiao, H., Zheng, Z., Chu, Q., Li, X., Yong, Q. & Ouyang, J. (2016). Lactic acid production from pretreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PloS one, 11(2), p.e0149101.
Jiang, X., Xue, Y., Wang, A., Wang, L., Zhang, G., Zeng, Q. & Yu, B. (2013). Efficient production of polymer-grade L-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresource Technology, 143, 665–668.
Li, Y., Wang, L., Ju, J., Yu, B. & Ma, Y. (2013). Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioresource Technology, 142,186-191.
Litchfield, JH. (2009). Lactic acid, microbially produced. In: Schaechter Mosel O, (Eds.), Encyclopedia of microbiology. (362–372) Oxford: Academic Press.
Ma, K., Maeda, T., You, H. & Shirai, Y. (2014). Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresource Technology,151, 28-35
Martinez, F.A.C., Balciunas, E.M., Salgado, J.M., González, J.M.D., Converti, A. & de Souza Oliveira, R.P. (2013). Lactic acid properties, applications and production: a review. Trends in Food Science and Technology, 30, 70-83.
Masutani, K. & Kimura, Y. (2014). PLA synthesis. From the monomer to the polymer. In Jiménez, A., Peltzer, M., and Ruseckaite, R. (Eds.), Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications.( pp.1–36). Oxfordshire: The Royal Society of Chemistry.
Moon, S.K., Wee, Y.J. and Choi. & G.W. (2012). A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. Journal of Bioscience Bioengineering, 114, 155–159.
Meng, Y., Xue, Y., Yu, B., Gao, C. & Ma, Y. (2012). Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresource Technology, 116, 334–339.
Ma, K., Hu, G., Pan, L., Wang, Z., Zhou, Y., Wang, Y., Ruan, Z. & He, M. (2016). Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresource Technology, 219, 114-122.
Nakano, S., Ugwu, C. U., &Tokiwa, Y. (2012). Efficient production of d-(-)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca (OH)2 as a neutralizing agent. Bioresource Technology, 104, 791-794.
Ohara, H., & Yahata, M. (1996). L-Lactic acid production by Bacillus sp. in anaerobic and aerobic culture. Journal of fermentation and Bioengineering, 81(3), 272-274.
Okano, K., Tanaka, T., Ogino, C., Fukuda, H. & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413-423.
Okino, S., Suda, M., Fujikura, K., Inui, M. & Yukawa, H. (2008). Production of D-lactic acid by Corynebacterium glutamicumunder oxygen deprivation. Applied Microbiology and Biotechnology, 78, 449-454.
Ong, S. A., Ng, Z.J. & Wu, J.C. (2016). Production of high concentration of L-lactic acid from cellobiose by thermophilic Bacillus coagulans WCP10-4. Applied microbiology and biotechnology, 100, 6501-6508.
Ou, M.S., Ingram, L.O. & Shanmugam, K.T. (2011). L (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. Journal of Industrial Microbiology and Biotechnology, 38, 599-605.
Ouyang, J., Ma, R., Zheng, Z., Cai, C., Zhang, M. & Jiang, T. (2013). Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material . Bioresource Technology, 135, 475–480.
Patel, M.A., Ou, M.S., Harbrucker, R., Aldrich, H.C., Buszko, M.L., Ingram, L.O. & Shanmugam, K.T., (2006).Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology, 72, 3228-3235.
Peng, L., Xie, N., Guo, L., Wang, L., Yu, B. & Ma, Y. (2014). Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38. PLoS one, 9(9), p.e107143.
Pieterse, B., Leer, R. J., Schuren, F. H., & van der Werf, M. J.(2005).Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology, 151(12), 3881-3894.
Poudel, P., Tashiro, Y. & Sakai, K. (2015). New application of Bacillus strains for optically pure l-lactic acid production: general overview and future prospects. Bioscience Biotechnology and Biochemistry, 80, 642–654
Prasirtsak, B., Thongchul, N., Tolieng, V. & Tanasupawat, S. (2016). Terrilactibacillus laevilacticus gen. nov., sp. nov., isolated from soil. International Journal of Systematic and Evolutionary microbiology, 66, 1311-1316
Qin, J., Zhao, B., Wang, X., Wang, L., Yu, B., Ma, Y., Ma, C., Tang, H., Sun, J. & Xu, P. (2009). Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS one, 4(2), p.e4359.
Qin, J., Wang, X., Zheng, Z., Ma, C., Tang, H., & Xu, P. (2010).Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresource technology, 101(19), 7570-7576.
Saini, P., Arora, M. & Kumar, M. N. V. R. (2016). Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews, 107, 47-59.
Singhvi, M., Joshi, D., Adsul, M., Varma, A. & Gokhale, D. (2010). d-(-)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-2 4. Green Chemistry, 12, 1106-1109.
Södergård, A. & Stolt, M. (2002). Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 27, 1123-1163.
Sun, J., Wang, Y., Wu, B., Bai, Z. & He, B. (2015). Enhanced production of d‐lactic acid by Sporolactobacillus sp. Y2–8 mutant generated by atmospheric and room temperature plasma. Biotechnology and Applied Biochemistry, 62, 287-292.
Thamacharoensuk, T., Tolieng, V., Thongchul, N., Kodama. K. & Tanasupawat, S. (2017). Characterisation of lactic acid producing Sporolactobacillus strains from tree barks in Thailand. Annals of Microbiology, 67, 215-218.
The National Innovation Agency (NIA). (2013). National roadmap for the development of bioplastics industry. Retrieved May 10, 2017, from www.nia/or.th/bioplastics/download/ROADMAP.pdf (in Thai)
Tian, K., Shi, G., Lu, F., Singh, S. & Wang, Z. (2013). High-efficiency L-lactate production from glycerol by metabolically engineered Escherichia coli. Journal of Biotechnology, 29, 1268-1277.
Tolieng, V., Prasirtsak, B., Miyashita, M., Shibata, C., Tanaka, N. Thongchul, N. & Tanasupawat, S. (2017 a). Sporolactobacillus shoreicorticis sp.nov., a lactic acid producing bacterium isolated from tree bark. International Journal of Systematic and Evolutionary microbiology, 67(7), 2363-2369.
Tolieng, V., Prasirtsak, B.,Sitdhipol, J.,Thongchul, N.& Tanasupawat, S. (2017 b). Identification and lactic acid production of bacteria isolated from soils and tree barks. Malaysian Journal of Microbiology, 13(2), 100-108.
Wang, Y., Cai, D., He, M., Wang, Z., Qin, P. & Tan, T. (2015). Open fermentative production of L-lactic acid using white rice bran by simultaneous saccharification and fermentation. Bioresource Technology, 198, 664-672.
Wang, Y., Chang, J., Cai, D., Wang, Z., Qin, P., & Tan, T. (2017). Repeated‐batch fermentation of L‐lactic acid from acid hydrolysate of sweet sorghum juice using mixed neutralizing agent under unsterilized conditions. Journal of Chemical Technology and Biotechnology, 92(7) DOI 10.1002/jctb.5195.
Wang, Y., Tian, T., Zhao, J., Wang, J., Yan, T., Xu, L., Liu, Z., Garza, E., Iverson, A., Manow, R. & Finan, C. (2012). Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnology letters, 34, 2069-2075.
Wang, J., Wang, Q., Xu, Z., Zhang, W. & Xiang, J. (2015). Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate. Journal of Microbiology and Biotechnology, 25, 26-32.
Wang, L., Xue, Z., Zhao, B., Yu, B. & Xu, P. (2013). Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresource Technology, 130,174-180.
Wang, L., Zhao, B., Li, F., Xu, K., Ma, C., Tao, F., Li, Q. & Xu, P. (2011). Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Applied Microbiology and Biotechnology, 89, 1009-1017.
Wang, Q., Zhao, X., Chamu, J. & Shanmugam, KT. (2011). Isolation, characterization and evolution of a new thermophilic Bacillus licheniformis for lactic acid production in mineral salts medium. Bioresource Technology, 102, 8152–8158.
Weerathaworn, P. (2013).Trend of bioplastics industry in Thailand. Plastics, 8(2), 45-46
Yadav, A. K., Chaudhari, A. B., & Kothari, R. M. (2011). Bioconversion of renewable resources into lactic acid: an industrial view. Critical reviews in biotechnology, 31(1), 1-19.
Ye, L., Zhou, X., Hudari, M.S.B., Li, Z. & Wu, J.C. ( 2013). Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology, 132, 38-44.
Zhao, B., Wang, L., Li, F., Hua, D., Ma, C., Ma, Y. & Xu, P. (2010). Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresource Technology, 101, 6499-6505.
Zhao, J., Xu, L., Wang, Y., Zhao, X., Wang, J., Garza, E., Manow, R. & Zhou, S. (2013). Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microbial Cell Factories, 12, 57.
Zhao, T., Liu, D., Ren, H., Shi, X., Zhao, N., Chen, Y. & Ying, H. (2014). D-Lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate. Journal of Microbiology and Biotechnology, 24, 1664-1672.
Zheng, L., Bai, Z., Xu, T. & He, B. (2012). Glucokinase contributes to glucose phosphorylation in D-lactic acid production by Sporolactobacillus inulinus Y2-8. Journal of Industrial Microbiology and Biotechnology, 39, 1685-1692.
Zhou, X., Ye, L. & Wu, J.C. (2013). Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Applied Microbiology and Biotechnology, 97, 4309-4314.

Downloads

Published

2018-01-05