Optimization of Culture Conditions for Extracellular 5-Aminolevulinic Acid Production by Rhodopseudomonas palustris LBL15 Using Response Surface Methodology

Authors

  • Pichit Chodok Program of plant production technology, Faculty of Science and Technology, Phranakorn Si Ayutthaya Rajabhat University

Abstract

The objective of this research was to investigate the optimum culture conditions for enhancing the production of extracellular 5-aminolevulinic acid (ALA) from Rhodopseudomonas palustris LBL15 by Response Surface Methodology (RSM) to evaluate the effects of levulinic acid, pH, succinate, glycine, and acetate on enhancing the production of ALA. It was found that the levulinic acid, pH and glycine presented the most significant effect on ALA production (P < 0.05), while the succinate and acetate were not significant. The coefficient of determination (R2) of the mathematical model was 0.9750. Regression analysis indicated that the optimal values of these variables were determined as: levulinic acid 12.81 mM, pH 6.58, succinate 16.28 mM, glycine 11.03 mM andacetate 1.98 mg/L. Under these optimal culture conditions, the maximum ALA production was 40.32±0.43 mg/L that showed a promising agreement with the predicted value (41.28 mg/L ALA), and pronounced 4 times higher than that of unoptimized experiment (10.12±0.62 mg/L ALA). Comparison of the experimental values with those of the predicted values was almost identical with low percentage error of ALA production of 2.33%.Keywords :  5-aminolevulinic acid, photosynthetic bacteria, response surface methodology 

References

Akram, N.A., & Ashraf, M. (2013). Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. Journal of Plant Growth Regulation, 32(3), 663-679.
An, J.S, Kim, J.E., Lee, D.H., Kim, B.Y., Cho, S., Kwon, I.H., Choi, W.W., Kang, S.M., Won, C.H., Chang, S.E., Lee, M.W., Choi, J.H, & Moon, K.C. (2011). 0.5% Liposome-encapsulated 5-aminolevulinic acid (ALA) photodynamic therapy for acne treatment. Journal of Cosmetic and Laser Therapy, 13, 28-32.
Bragagni, M., Scozzafava, A., Mastrolorenzo, A., Supuran, C.T., & Mura, P. (2015). Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy. International Journal of Pharmaceutics, 494(1), 258-263.
Chakrabory, N., & Tripathy, B.C. (1992). Involvement of singlet oxygen in 5-aminolevulinic acid induced photodynamic damage of cucumber chloroplast. Plant Physiology, 98(1), 7-11.
Choorit, W., Saikeur, A., Chodok, P., Prasertsan, P., & Kantachote, D. (2011). Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. Journal of Bioscience and Bioengineering, 111(6), 658-664.
Chung, S.Y., Seo, K.H., & Rhee, J.I. (2005). Influence of culture conditions on the production of extracellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochemistry, 40(1), 385-394.
Feng, S., Li, M.F., Wu, F., Li, W.L., & Li, S.P. (2015). 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China. Scientia Horticulturae, 193, 188-194.
Grigalavicius, M., Juraleviciute, M., Kwitniewski, M., & Juzeniene, A. (2017). The influence of photodynamic therapy with 5-aminolevulinic acid on senescent skin cancer cells. Photodiagnosis and Photodynamic Therapy, 17, 29-34.
Heinemann, I.U., Jahn, M., & Jahn, D. (2008). The biochemistry of heme biosynthesis. Archives of Biochemistry and Biophysics, 474(2), 238-251.
Kantha, T., Chaiyasut, C., Kantachote, D., Sukrong, S., & Muangprom, A. (2010). Selection of photosynthetic bacteria producing 5-aminolevulinic acid from soil of organic saline paddy fields from the Northeast region of Thailand. African Journal of Microbiology Research, 4(17), 1848-1855.
Kars, G., & Alparslan, U. (2013). Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy, 38(34), 14488-14494.
Lee, C., Qiao, X., Goeger, D.E., & Anderson, K.E. (2004). Fluorometric measurement of 5-aminolevulinic acid in serum. Clinica Chimica Acta, 347(1-2), 183-188.
Liu, S., Li, X., Zhang, G., & Zhang, J. (2015). Optimization of influencing factors on biomass accumulation and 5-aminolevulinic acid (ALA) yield in Rhodobacter sphaeroides wastewater treatment. Journal of Microbiology and Biotechnology, 25(11), 1920-1927.
Liu, X.Y., Xu, X.Y., Ma, Q.L., & Wu, W.H. (2005). Biological formation of 5-aminolevulinic acid by photosynthetic bacteria. Journal of Environmental Sciences-China, 17(1), 152-155.
Liu, S., Zhang, G., Li, J., Li, X., & Zhang, J. (2016). Optimization of biomass and 5-aminolevulinic acid production by Rhodobacter sphaeroides ATCC17023 via response surface methodology. Applied Biochemistry and Biotechnology, 179(3), 444-458.
Liu, S., Zhang, G., Li, X., & Zhang, J. (2014). Microbial production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 98(17), 7349-7357.
Luli, G.W., & Strohl, W.R. (1990). Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Applied and Environmental Microbiology, 56(4), 1004-1011.
Neuberger, A. (1961). Aspects of the metabolism of glycine and porphyrins. Biochemistry Journal, 78, 1-10.
Noparatnaraporn, N., Watanabe, M., & Sasaki, K. (2000). Extracellular formation of 5-aminolevulinic acid by intact cells of the marine photosynthetic bacterium Rhodovulum sp. under various pH conditions. World Journal of Microbiology and Biotechnology, 16(3), 313-315.
Oishi, H., Nomiyama, H., Nomiyama, K., & Tomokuni, K. (1996). Fluorometric HPLC determination of delta-aminolevulinic acid (ALA) in the plasma and urine of lead workers: biological indicators of lead exposure. Journal of Analytical Toxicology, 20(2), 107-110.
Qin, G., Lin, J., Liu, X., & Cen, P. (2006). Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 102(4), 316-322.
Saikeur, A., Choorit, W., Prasertsan, P., Kantachote, D., & Sasaki, K. (2009). Influence of precursors and Inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Bioscience, Biotechnology, and Biochemistry, 73(5), 987-992.
Sasaki, K., Ikeda, S., Nishizawa, Y., & Hayashi, M. (1987). Production of 5-aminolevulinic acid by photosynthetic bacteria. Journal of Fermentation Technology, 65(5), 511-515.
Sasaki, K., Tanaka, T., Nishizawa, Y., & Hayashi, M. (1991). Enhanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in photoheterotrophic culture of Rhodobacter sphaeroides. Journal of Fermentation and Bioengineering, 71(6), 403-406.
Sasaki, K., Watanabe, M., & Nishio, N. (1997). Inhibition of 5-aminolevulinic acid (ALA) dehydratase by undissociated levulinic acid during ALA extracellular formation by Rhodobacter sphaeroides. Biotechnology Letters, 19(5), 421-424.
Sasaki, K., Watanabe, M., Tanaka, T., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58(1), 23-29.
Sasikala, C., Ramana, C.V., & Rao, P.R. (1994). 5-Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnology Progress, 10(5), 451-459.
Sattayasamitsathit, S., & Prasertsan, P. (2013). Characterization of a newly isolated Rubrivivax benzoatilyticus PS-5 with self-flocculation property and optimization pathway for 5-aminolevulinic acid production. African Journal of Biotechnology, 12(16), 2069-2081.
Sattayasamitsathit, S., & Prasertsan, P. (2014). Improvement of 5-aminolevulinic acid production by Rubrivivax benzoatilyticus PS-5 with self-flocculation by co-fermentation of precursors and volatile fatty acids under pH-controlled conditions. Annals of Microbiology, 64(1), 385-389.
Sonhom, R., Thepsithar C., & Jongsareejit, B. (2012). High level production of 5-aminolevulinic acid by Propionibacterium acidipropionici grown in a low-cost medium. Biotechnology Letters, 34(9), 1667-1672.
Tangprasittipap, A., Prasertsan, P., Choorit, W., & Sasaki, K. (2007). Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnology Letters, 29(5), 773-778.
Xie, L., Wang, Z.H., Cheng, X.H., Gao, J.J., Zhang, Z.P., & Wang, L.J. (2013). 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Journal of Plant Growth Regulation, 69(3), 295-303.
Ye, J., Yang, X., Chen, Q., Xu, F., & Wang, G. (2017). Promotive effects of 5-aminolevulinic acid on fruit quality and coloration of Prunus persica (L.) Batsch. Scientia Horticulturae, 217, 266-275.
Zeng, A.P., Biebl, H., & Deckwer, W.D. (1990). Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Applied of Microbiology and Biotechnology, 33(5), 485-489.

Downloads

Published

2017-07-19