Fatty Acid in Actinomycetes Isolated from Soils and Marine Sponges Collected from the Coasts of Thailand
Abstract
Twenty two isolates of actinomycetes from soil and marine sponge collected from the coast of Thailand at Chonburi, Chanthaburi, and Nakhon-Si Thammarat were determined for fatty acid composition by GC/FID. The study found that the SFAs was the main component in all isolates; C16:0 was found in the highest amount 22.92%TFA, except for three isolates “NS2-2” genus Nocardiopsis, “NS4-6” genus Streptomyces and “WN-POR-02-1” genus Micromonospora which the PUFAs was the main component. The highest levels of linoleic acid (C18:2n6) and α-linolenic acid (C18:3n3) were found in isolate NS2-2 at 37.38 ± 0.27% and 4.07 ± 0.09% total fatty acid respectively. These two PUFAs are the precursors of long chain omega-6 and omega-3 families which are essential fatty acids for both aquatic and terrestrial species, as these cannot be synthesized by certain species and thus these must be supplied within the diet. So the actinomycete isolates NS2-2, NS4-6 and WN-POR-02-1 should be develop as the sources for essential fatty acid productions.Keywords: Actinomycetes, Fatty acidReferences
Balfry, S. K. & Higgs, D. A. (2001). Influence of dietary lipid composition on the immune system and disease resistance of finfish. In Lim, C. and Webster, C.D. (eds.) Nutritional and fish health.(pp. 213-234). New York: The Haworth Press, Inc.
Banerjee, S., Azad, A., Vikineswary, S., Selvaraj, O.S., & Mukherjee,T.K. (1999). Phototrophic Bacteria as Fish Feed Supplement. Microbial fish feed supplement, 991-994.
Berge, J.P., & Barnathan, G. (2005). Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds and economical aspects. Adv.Biochem Engin/ Biotechnol, 96, 49-125.
Bernan, V.S.,Greenstein, M.,& Malese,W.M.(1997). Marine microorganism as a source of new natural products. Applied Microbiology, 43, 57-87.
Brown, M.R., Barrett, S.M., Volkman, J.K., Nearhos, S.P., Nell, J.A., & Allan, G.L. (1996). Biochemical composition of new yeasts and bacteria evaluated ad food for bivalve aquaculture. Aquaculture, 143, 341-360.
Brown, M.R., Jeffrey, S.W., Volkman, J.K., & Dunstan, G.A. (1997). Nutritional properties of microalgae for maricuture. Aquaculture, 151, 315-331.
Cai, M., Zhi, X.Y.,Tang, S.K., Zhang, Y.Q., Xu, L.H., & Li, W.J. (2008). Streptomonospora halophile sp. nov., a halophilic actinomycete isolated from a hypersaline soil. International Journal of Systematic and Evolutionary Microbiology, 58,1556–1560.
Calder, P.C. (2007). Immunomodulation by omega-3 fatty acids. Prostaglandins, leukotrienes and essential fatty acids, 77, 327-335.
Cassler, M., Peterson, C.L., Ledger, A., Pomponi, S.A., Wright, A.E., Winegar, R., McCarthy, P.J., & Lopez, J.V. (2008). Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp. Microb. Ecol., 55, 384–394.
Christie, W.W. (2003). Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipid analysis: isolation, separation of lipids (3rd ed.). (p.416). United Kingdom: The Oily press.
Chun, J., Bae, K.S., Moon, E.Y., Jung, S.O., Lee, H.K., & Kim, S.J. (2000). Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol, 50, 1909-1913.
De Rosa, S., De Giulio, A., Tommonaro, G., Popov, S., & Kujumgiev, A. (2000). A β-amino acid containing tripeptide from a Pseudomonas-Alteromonas bacterium associated with a Black sea sponge. J. Nat. Prod, 63, 1454-1455.
De Rosa, S., Mitova, M., & Tommonaro, G. (2003). Marine bacteria associated with sponge as source of cyclic peptides. Biomol. Eng., 20, 311-316.
Dalsgaard, J., St.John, M., Kattner, G., Muller-Navarra, D., & Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Adv.Mar.Biol, 46, 225-340.
Dharmaraj, S. & Dhevendaran, K. (2010) “Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri, Food Technology and Biotechnology, 48(4), 497–504,
Doumenq, P., Acquaviva, M., Asia, L., Durbec, J.P., Dréau, Y.L., Mille, G., & Bertrand, J.C. (1999). The fatty acid changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions. FEMS Microbiology Ecology, 28(2), 151–161.
Ergas, D., Eilat, E., Mendlovic, S., & Sthoeger, Z.M. (2002). n-3 Fatty acid and the immune system in autoimmunity. Isr. Med. Assoc. J., 4(1), 34-38.
Esin, E., Hames, K., & Atac, U. (2012). Isolation strategies of marine-derived actinomycetes from
sponge and sediment sample. Journal of Microbiological Method, 88, 342-347.
Folch, J., Lees, M., & Sloane-Stanley, G.H., (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497-509.
Funk, C.D. (2001). Prostaglandins and Leukotrienes: Advances in eicosanoids biology Science, 294, 1871-1875.
Ghosh, S., Sinha, A. & Sahu, C. (2008). Dietary probiotic supplementation on growth and health of live-bearing ornamental fishes. Aquaculture Nutrition, 14(4), 289–299.
Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids, part 1: occurrence, biological activities and application. Tibtech,15, 401-409.
Goodfellow, M. (1989). Genus Rhodococcus Zopf 1891 ,28AL .In Williams, Sharpe, and Holt (eds). Bergey’s
Manual of Syatematic Bacteriology vol 4. (pp.2362-2371). Williams and Wilkins. Baltimore.
Goodfellow, M., Brown, R., Ahmed, L., Pathom-aree, W., Bull, A.T., Jones, A.L., Stach, J.E.M., Zucchi, T.D., Zhang, L., & Wang, J. (2012). Verrucosispora fiedleri sp. nov., an actinomycete isolated from a fjord sediment which synthesizes proximicins. Antonie van Leeuwenhoek, 101, 185–193.
Harbige, L.S. (1998). Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc Nutr Soc., 57(4), 555-62.
Horrobin, D.F. (1992). Nutritional and medical importance of γ-linolenic acid. Prog Lipids Res, 31, 167-194.
Intriago, P., & Jones, D.A. (1993). Bacteria as food for artemia. Aquaculture, 113, 115-127.
Jeroen, S.D., Bruns, H., & Riclea, R. (2011). Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca Beilstein J. Org. Chem, 7, 1697–1712.
Jump, D.B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. J. Biol. Chem, 277, 8755- 8758.
Kiron, V., Fukuda, H., Takeuchi, T. & Watanabe, T.(1995). Essential fatty acid nutrition and defense mechanisms in rainbow trout Oncorhynchus mykiss. Comparative biochemistry and physiology, 111A, 361-367.
Kocatepe, D., & Turan, H. (2012). Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea. Lipids, 47(6), 635-641.
Koval'chuk, L.P., Donets, A.T., Burtseva, S.A., Ladovina, V.N., & Perepeli'tsa, E.D. (1980). Fatty acids of actinomycete phospholipids. Mikrobiologiia, 49(5), 746-750.
Leonardos, N., & Lucas, A.N.I. (2000). The use of larval fatty acids as an index of growth in mytilus edulis L. larvae. Aquaculture, 184, 155-166.
Loo, P.L., Chong, V.C., & Vikineswary, S. (2013). Rhodovulum sulfidophilum, a phototrophic bacterium, grown in palm oil mill effluent improves the larval survival of marble goby Oxyeleotris marmorata (Bleeker) Aquaculture Research, 44, 495–507.
Lovell, R.T. (1998). Nutrition and feeding of Fish, Second edition. (p.267). Kluwer Academic Publishers. Massachusetts.
Mellouli, L. (2011). Taxonomy and antimicrobial activities of a new Streptomyces sp. TN17 isolated in the soil from an oasis in Tunis. Arch. Biol. Sci., Belgrade, 63(4), 1047-1056.
Nichol, D.S. (2003). Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiology Letters, 219, 1-7.
Nichol, D., & McMeekin, T.A. (2002). Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids. Journal of Microbiological Methods, 48, 161-170.
Nonomura, H., & Hayakawa, M. (1988). New methods of the selective isolation of soil Actinomycetes. In: Y. Okami, T. Beppu, H. Ogawara, Biology of Actinomycetes ’88 ed. Japan: Scientific Societies Press.
Ozogul, Y., Ozogul, F., Ciçek, E., Polat, A., & Kuley, E. (2009). Fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea. Int. J. Food Sci. Nutr, 60(6), 464-475.
Park, Y.H., Yoon, J.H., Shin, Y.K., Kudo, S.K., Seino, A., Kim, H.J., Lee, J.S., & Lee, S.T. (1999). Classification of Nocardioides fulvus' IF0 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandrarnycini sp. nov. International Journal of Systematic Bacteriology, 49, 743-752.
Pathom-aree, W., Yuichi, N., Sutcliffe, I.C., Ward, A.C., Horikoshi, K., Bull, A.T., & Goodfellow, M. (2014). Williamsia marianensis sp. A novel actinomycete isolated from the Mariana Trench. (Announcing a February 2014 special issue) in the International Journal of Systematic and Evolutionary Microbiology, 56(5), 1123-1126.
Pratoomyot, J., Srivilas, P., & Noiraksar, T. (2005). Fatty acids composition of 10microalgal species. Songklanakarin, J. Sci. Technol, 27(6), 1179-1187.
Pravat, M.M., Aginampudi, S., Madhusmita, A., & Das, A.P. (2009). Fatty acid profiles and antibacterial screening of lipid of sponge Fasciospongia cavernosa (Schmidt) collected from the bay of Bengal. J. Serb. Chem. Soc., 74 (11), 1241–1248.
Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86(11), 807–815.
Ruan, J.S. (1994). Rapid isolation and identification of actinomycetes. In: UNESCO Southeast Asia Regional Training Workshop-Rapid Method in Microbiology and Biotechnology. (Ruan-29-Ruan-47). Bangkok.
Sayanova, O.V., & Napier, J.A. (2004). Eicosapentaenoic acid; Biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry, 65, 147-158.
Selvameenal, L., Radhakrishnan, M., & Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical, 71(5), 499-504.
Simupoulos, A.P. (2002). Omega-3 fatty acids in inflammation and Autoimmune diseases. J.Am. Coll. Nutr., 21(6), 495-505.
Sobolevskaya, M., Shevchenko, L., Moiseenko, O., & Afiyatullov, S. (2012). Fatty-acid compositions of marine isolates of the actinobacteria Nocardiopsis umidischolae KMM 7036 and Streptomyces sp. KMM 7210. Chemistry of Natural Compounds, 48(2), 299-300.
Srivibool, R. (2006). Actinomycete. (pp.1). Chonburi. Success Advertising Design Partnership. (in Thai)
Srivibool, R & Watanadilok, R. (2015). Distribution of Actinomycetes in Thai Mangrove Sediments. In Proceeding Burapha University International Conference. (pp.944-952). Bangsaen Heritage.
Thongrod, S. (1992). The role of fat in fish feed. Thai Fisheries Gazette, 45(4), 943-950. (in Thai).
Trujillo, M.E., Kroppenstedt, R.M., Molinero, C.F., Schumann, P. & Molina, E.M. (2007). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius International Journal of Systematic and Evolutionary Microbiology, 57, 2799–2804.
Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., & Garland, C.D. (1989). Fatty acid and Lipid composition of 10 species of microalgae used in mariculture. J. Exp.Mar. Biol. Ecol., 128, 219-240.
Watve, M.G., Tickoo, R., Jog, M.M., & Bhole, B.D. (2001). How many antibiotics are produced by the genus Streptomyces. Arch. Microbiol., 176, 386–390.
Williams, S.T., Sharpe, M.E. & Holt, J.G. (1989). Bergey’s Manual of Systematic bacteriology. Vol.4, (pp.2314-2315). Williams and Wilkins Co., Baltimore.
Zhao, H.Y., Kassama, M., Young, D.B., & Kell, R.G. (2004). Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy,16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. Applied and Environmental Microbiology, 70, 679-682.
Zheng, L., Yan, X., Xu, J., Chen, H., & Lin, W. (2005). Hymeniacidon perleve associated bioactive bacterium Pseudomonas sp. NJ6-3-1. Applied Biochemistry and Microbiology, 41(1), 29-33.
Banerjee, S., Azad, A., Vikineswary, S., Selvaraj, O.S., & Mukherjee,T.K. (1999). Phototrophic Bacteria as Fish Feed Supplement. Microbial fish feed supplement, 991-994.
Berge, J.P., & Barnathan, G. (2005). Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds and economical aspects. Adv.Biochem Engin/ Biotechnol, 96, 49-125.
Bernan, V.S.,Greenstein, M.,& Malese,W.M.(1997). Marine microorganism as a source of new natural products. Applied Microbiology, 43, 57-87.
Brown, M.R., Barrett, S.M., Volkman, J.K., Nearhos, S.P., Nell, J.A., & Allan, G.L. (1996). Biochemical composition of new yeasts and bacteria evaluated ad food for bivalve aquaculture. Aquaculture, 143, 341-360.
Brown, M.R., Jeffrey, S.W., Volkman, J.K., & Dunstan, G.A. (1997). Nutritional properties of microalgae for maricuture. Aquaculture, 151, 315-331.
Cai, M., Zhi, X.Y.,Tang, S.K., Zhang, Y.Q., Xu, L.H., & Li, W.J. (2008). Streptomonospora halophile sp. nov., a halophilic actinomycete isolated from a hypersaline soil. International Journal of Systematic and Evolutionary Microbiology, 58,1556–1560.
Calder, P.C. (2007). Immunomodulation by omega-3 fatty acids. Prostaglandins, leukotrienes and essential fatty acids, 77, 327-335.
Cassler, M., Peterson, C.L., Ledger, A., Pomponi, S.A., Wright, A.E., Winegar, R., McCarthy, P.J., & Lopez, J.V. (2008). Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp. Microb. Ecol., 55, 384–394.
Christie, W.W. (2003). Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipid analysis: isolation, separation of lipids (3rd ed.). (p.416). United Kingdom: The Oily press.
Chun, J., Bae, K.S., Moon, E.Y., Jung, S.O., Lee, H.K., & Kim, S.J. (2000). Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol, 50, 1909-1913.
De Rosa, S., De Giulio, A., Tommonaro, G., Popov, S., & Kujumgiev, A. (2000). A β-amino acid containing tripeptide from a Pseudomonas-Alteromonas bacterium associated with a Black sea sponge. J. Nat. Prod, 63, 1454-1455.
De Rosa, S., Mitova, M., & Tommonaro, G. (2003). Marine bacteria associated with sponge as source of cyclic peptides. Biomol. Eng., 20, 311-316.
Dalsgaard, J., St.John, M., Kattner, G., Muller-Navarra, D., & Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Adv.Mar.Biol, 46, 225-340.
Dharmaraj, S. & Dhevendaran, K. (2010) “Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri, Food Technology and Biotechnology, 48(4), 497–504,
Doumenq, P., Acquaviva, M., Asia, L., Durbec, J.P., Dréau, Y.L., Mille, G., & Bertrand, J.C. (1999). The fatty acid changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions. FEMS Microbiology Ecology, 28(2), 151–161.
Ergas, D., Eilat, E., Mendlovic, S., & Sthoeger, Z.M. (2002). n-3 Fatty acid and the immune system in autoimmunity. Isr. Med. Assoc. J., 4(1), 34-38.
Esin, E., Hames, K., & Atac, U. (2012). Isolation strategies of marine-derived actinomycetes from
sponge and sediment sample. Journal of Microbiological Method, 88, 342-347.
Folch, J., Lees, M., & Sloane-Stanley, G.H., (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497-509.
Funk, C.D. (2001). Prostaglandins and Leukotrienes: Advances in eicosanoids biology Science, 294, 1871-1875.
Ghosh, S., Sinha, A. & Sahu, C. (2008). Dietary probiotic supplementation on growth and health of live-bearing ornamental fishes. Aquaculture Nutrition, 14(4), 289–299.
Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids, part 1: occurrence, biological activities and application. Tibtech,15, 401-409.
Goodfellow, M. (1989). Genus Rhodococcus Zopf 1891 ,28AL .In Williams, Sharpe, and Holt (eds). Bergey’s
Manual of Syatematic Bacteriology vol 4. (pp.2362-2371). Williams and Wilkins. Baltimore.
Goodfellow, M., Brown, R., Ahmed, L., Pathom-aree, W., Bull, A.T., Jones, A.L., Stach, J.E.M., Zucchi, T.D., Zhang, L., & Wang, J. (2012). Verrucosispora fiedleri sp. nov., an actinomycete isolated from a fjord sediment which synthesizes proximicins. Antonie van Leeuwenhoek, 101, 185–193.
Harbige, L.S. (1998). Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc Nutr Soc., 57(4), 555-62.
Horrobin, D.F. (1992). Nutritional and medical importance of γ-linolenic acid. Prog Lipids Res, 31, 167-194.
Intriago, P., & Jones, D.A. (1993). Bacteria as food for artemia. Aquaculture, 113, 115-127.
Jeroen, S.D., Bruns, H., & Riclea, R. (2011). Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca Beilstein J. Org. Chem, 7, 1697–1712.
Jump, D.B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. J. Biol. Chem, 277, 8755- 8758.
Kiron, V., Fukuda, H., Takeuchi, T. & Watanabe, T.(1995). Essential fatty acid nutrition and defense mechanisms in rainbow trout Oncorhynchus mykiss. Comparative biochemistry and physiology, 111A, 361-367.
Kocatepe, D., & Turan, H. (2012). Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea. Lipids, 47(6), 635-641.
Koval'chuk, L.P., Donets, A.T., Burtseva, S.A., Ladovina, V.N., & Perepeli'tsa, E.D. (1980). Fatty acids of actinomycete phospholipids. Mikrobiologiia, 49(5), 746-750.
Leonardos, N., & Lucas, A.N.I. (2000). The use of larval fatty acids as an index of growth in mytilus edulis L. larvae. Aquaculture, 184, 155-166.
Loo, P.L., Chong, V.C., & Vikineswary, S. (2013). Rhodovulum sulfidophilum, a phototrophic bacterium, grown in palm oil mill effluent improves the larval survival of marble goby Oxyeleotris marmorata (Bleeker) Aquaculture Research, 44, 495–507.
Lovell, R.T. (1998). Nutrition and feeding of Fish, Second edition. (p.267). Kluwer Academic Publishers. Massachusetts.
Mellouli, L. (2011). Taxonomy and antimicrobial activities of a new Streptomyces sp. TN17 isolated in the soil from an oasis in Tunis. Arch. Biol. Sci., Belgrade, 63(4), 1047-1056.
Nichol, D.S. (2003). Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiology Letters, 219, 1-7.
Nichol, D., & McMeekin, T.A. (2002). Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids. Journal of Microbiological Methods, 48, 161-170.
Nonomura, H., & Hayakawa, M. (1988). New methods of the selective isolation of soil Actinomycetes. In: Y. Okami, T. Beppu, H. Ogawara, Biology of Actinomycetes ’88 ed. Japan: Scientific Societies Press.
Ozogul, Y., Ozogul, F., Ciçek, E., Polat, A., & Kuley, E. (2009). Fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea. Int. J. Food Sci. Nutr, 60(6), 464-475.
Park, Y.H., Yoon, J.H., Shin, Y.K., Kudo, S.K., Seino, A., Kim, H.J., Lee, J.S., & Lee, S.T. (1999). Classification of Nocardioides fulvus' IF0 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandrarnycini sp. nov. International Journal of Systematic Bacteriology, 49, 743-752.
Pathom-aree, W., Yuichi, N., Sutcliffe, I.C., Ward, A.C., Horikoshi, K., Bull, A.T., & Goodfellow, M. (2014). Williamsia marianensis sp. A novel actinomycete isolated from the Mariana Trench. (Announcing a February 2014 special issue) in the International Journal of Systematic and Evolutionary Microbiology, 56(5), 1123-1126.
Pratoomyot, J., Srivilas, P., & Noiraksar, T. (2005). Fatty acids composition of 10microalgal species. Songklanakarin, J. Sci. Technol, 27(6), 1179-1187.
Pravat, M.M., Aginampudi, S., Madhusmita, A., & Das, A.P. (2009). Fatty acid profiles and antibacterial screening of lipid of sponge Fasciospongia cavernosa (Schmidt) collected from the bay of Bengal. J. Serb. Chem. Soc., 74 (11), 1241–1248.
Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86(11), 807–815.
Ruan, J.S. (1994). Rapid isolation and identification of actinomycetes. In: UNESCO Southeast Asia Regional Training Workshop-Rapid Method in Microbiology and Biotechnology. (Ruan-29-Ruan-47). Bangkok.
Sayanova, O.V., & Napier, J.A. (2004). Eicosapentaenoic acid; Biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry, 65, 147-158.
Selvameenal, L., Radhakrishnan, M., & Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical, 71(5), 499-504.
Simupoulos, A.P. (2002). Omega-3 fatty acids in inflammation and Autoimmune diseases. J.Am. Coll. Nutr., 21(6), 495-505.
Sobolevskaya, M., Shevchenko, L., Moiseenko, O., & Afiyatullov, S. (2012). Fatty-acid compositions of marine isolates of the actinobacteria Nocardiopsis umidischolae KMM 7036 and Streptomyces sp. KMM 7210. Chemistry of Natural Compounds, 48(2), 299-300.
Srivibool, R. (2006). Actinomycete. (pp.1). Chonburi. Success Advertising Design Partnership. (in Thai)
Srivibool, R & Watanadilok, R. (2015). Distribution of Actinomycetes in Thai Mangrove Sediments. In Proceeding Burapha University International Conference. (pp.944-952). Bangsaen Heritage.
Thongrod, S. (1992). The role of fat in fish feed. Thai Fisheries Gazette, 45(4), 943-950. (in Thai).
Trujillo, M.E., Kroppenstedt, R.M., Molinero, C.F., Schumann, P. & Molina, E.M. (2007). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius International Journal of Systematic and Evolutionary Microbiology, 57, 2799–2804.
Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., & Garland, C.D. (1989). Fatty acid and Lipid composition of 10 species of microalgae used in mariculture. J. Exp.Mar. Biol. Ecol., 128, 219-240.
Watve, M.G., Tickoo, R., Jog, M.M., & Bhole, B.D. (2001). How many antibiotics are produced by the genus Streptomyces. Arch. Microbiol., 176, 386–390.
Williams, S.T., Sharpe, M.E. & Holt, J.G. (1989). Bergey’s Manual of Systematic bacteriology. Vol.4, (pp.2314-2315). Williams and Wilkins Co., Baltimore.
Zhao, H.Y., Kassama, M., Young, D.B., & Kell, R.G. (2004). Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy,16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. Applied and Environmental Microbiology, 70, 679-682.
Zheng, L., Yan, X., Xu, J., Chen, H., & Lin, W. (2005). Hymeniacidon perleve associated bioactive bacterium Pseudomonas sp. NJ6-3-1. Applied Biochemistry and Microbiology, 41(1), 29-33.
Downloads
Published
2016-07-06
Issue
Section
บทความวิจัยจากการสัมมนาและฝึกอบรมนานาชาติ International Seminar and Workshop on Marine Natural Products 2015