Optimization of Ultrasound-assisted Extraction Conditions for Bioactive Compounds and Antioxidant Activities from Lotus Petal (Nymphaea lotus L.) Using Response Surface Methodology

Authors

  • Pimchanok Prikboonchan คณะเทคโนโลยีการเกษตรและอาหาร มหาวิทยาลัยราชภัฏพิบูลสงคราม
  • Khamrop Samavardhana คณะเทคโนโลยีการเกษตรและอาหาร มหาวิทยาลัยราชภัฏพิบูลสงคราม

Abstract

 Response surface methodology (RSM) was used to optimize Ultrasound-assisted Extraction (UAE) of bioactive compounds and antioxidant activities from lotus petal (Nymphaea lotus L.) and central composite design (CCD) was applied to investigate the effects of independent variables as ethanol concentration (50-80%), extraction time (10-30 min) and solid to solvent ratio (1:15-1:40 g/ml) on responses. The optimum ethanol concentration, extraction time and solid to solvent ratio were 59.00%, 22.00 min and 1:28.00 g/ml,  respectively and the values of total phenolic content, total flavonoid content, antioxidant activities as DPPH and FRAP were 51.01±1.50 mg GAE/g, 27.32±1.81 mg CE/g, 29.69±1.41 m mol TE/g and 21.42±0.58 m mol TE/g, respectively. The second-order polynomial equations were significant (p£0.05) and high regression coefficient ranged between 0.965 and 0.979. Comparison of the experimental values with those predicted values was almost identical with percentage error between 0.16 and 2.94 %.  Keywords :  Nymphaea lotus L. Petal ; ultrasonic-assisted extraction ; phenolic ; antioxidant activity ;                    response surface methodology

References

Chakraborty, S., Uppaluri, R., & Das, C. (2020). Optimization of ultrasound-assisted extraction(UAE) process for
the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food and Bioproducts Processing, 120, 114-122.

Chew, K.K., Khoo, M.Z., Ng, S.Y., Thoo, Y.Y., Wan Aida, W.M., & Ho, C.W. (2011). Effect of ethanol concentration,
extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. International Food Research Journal, 18, 1427-1435.

Chmelová, D., Škulcová, D., Legerská, B., Horník, M., & Ondrejovič, M. (2020). Ultrasonic-assisted extraction of
polyphenols and antioxidants from Picea abies bark. Journal of Biotechnology, 314, 25-33.

Chodok, P., & Khumkhom. S. (2020). Optimization of extraction conditions for improving bioactive compounds
and antioxidant activities from karonda (Carissa carandas Linn.) fruits using response surface methodology. Burapha Science Journal, 25, 617-635. (in Thai)

Cissé, M., Bohuon, P., Sambe, C., Kane, C., Sakho, M., & Dornier, M. (2011). Aqueous extraction of anthocyanins from Hibiscus sabdariffa: experimental kinetics and modeling. Journal of Food Engineering, 109, 16-21.

Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2014). Optimization of microwave-assisted
extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585-595.

Dangnoi, T. (2016). Phytochemical screening and biological activities of Nelumbo nucifera Gaerth. Master thesis,
Burapha university, Chonburi. (in Thai)

Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-assisted extraction and purification of phenolic
compounds from sugarcane (Saccharum officinarum L.) rinds. LWT- Food Science and Technology, 60, 970-976.

Hammi, K.M., Hammami, M., Rihouey, C., Cerf, D.L., Ksouri, R., & Majdoub, H. (2016). Optimization extraction of
polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chemistry, 212, 476-484.

Hossain, M.B., Brunton, N., Patras, A., Tiwari, B., O’Donnell, C.P., Martin-Diana, A.B., & Barry-Ryan, C. (2012).
Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics Sonochemistry, 19, 582-590.

Hu, M., & Skibsted, L.H. (2002). Antioxidative capacity of Rhizome extract and Rhizome knot extract of
edible Lotus (Nelumbo nuficera). Food Chemistry, 76, 327–333.

Kredy, H.M., Huang, D., Xie, B., He, H., Yang, E., Tian, B., & Xiao, D. (2010). Flavonols of lotus (Nelumbo
nucifera, Gaertn.) seed epicarp and their antioxidant potential. European Food Research and Technology, 231, 387-394.

Nakprasom, K., Warit, J., Auppara, A., Tanongkarkkit, Y., & Nakprasom, N. (2017). Optimized extraction of total
phenolic compounds from Nelumbo nucifera Gaertn using microwave assisted extraction (MAE). KKU
Science Journal, 45(2), 328-342. (in Thai)

Ngoc, Y.N.T., Tri, D.L., Khanh, Q.N.H., Nguyen, D.C., & Bach, L.G. (2019). Extraction conditions of polyphenol,
flavonoid compounds with antioxidant activity from Veronid amygdalina del. Leaves:modeling and optimization of the process using the response surface methodology RSM. Materials Today: Proceedings, 18, 4004-4010.

Pandey, A., Belwal, T., Sekar, K.C., Bhatt, I.D., & Rawal, R.S. (2018). Optimization of ultrasonic-assisted extraction
(UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops & Products, 119, 218-225.

Riciputi, Y., Diaz-de-Cerio, E., Akyol, H., Capanoglu, E., Cerretani, L., Caboni, M.F., & Verardo, V. (2018).
Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chemistry, 269, 259-263.

Şahin, S., & Samli, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with
response surface methodology. Ultrasonics Sonochemistry. 20, 595–602

Sai-Ut, S., Benjakul, S., Kraithong, S., & Rawdkuen, S. (2015). Optimization of antioxidants and tyrosinase inhibitory activity in mango peels using response surface methodology. Food Science and Technology, 64, 742-749.



Samavardhana, K., Supawititpattana, P., Jitrepotch, N., Rojsuntornkitti, K., & Kongbangkerd, T. (2015). Effects of
extracting conditions on phenolic compounds and antioxidant activity from different grape processing byproducts. International Food Research Journal, 22, 1169-1179.

Sreela-or, C., Plangklang, P., Imai, T., & Reungsang, A. (2011). Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: Statistical key factors optimization. International Journal of Hydrogen Energy, 36, 14227-14237.

Steinrut, L., Kamdaeng, O., & Srisawat, K. (2017). Antioxidant activity of Nelumbonucifera and Lotus Part fortified
in kleep lumduan. ASTC2017:The5th Academic Science and Technology Conference 2017. 448-453.
(in Thai)

Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry- A review. Innovative Food Science and Emerging Technologies, 9,
161-169.

Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8, 303-313.

Wongklang, S., Steinrut, L., & Itharat, A. (2014). Antioxidant activity of Nelumbo nucifera Gaerth. extract. Agricultural Science Journal (Suppl.), 45(2), 673-676. (in Thai).

Yang, Q.Q., Gun, R.Y., Zhang, D., Ge, Y.Y., Cheng, L.Z., & Corke, H. (2019). Optimization of kidney bean
antioxidants using RSM & ANN and characterization of antioxidant profile by UPLC-QTOF-MS. LWT-Food Science and Technology, 114, 1-9.

Živković, J., Šavikin, K., Janković, T., Ćujić, N., & Menković, ć.N. (2018). Optimization of ultrasound-assisted
extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Separation and Purification Technology, 194, 40-47.

Downloads

Published

2021-05-05