Effect of Wall Material, pH, and Core/Wall Ratio on the Production of Orange Essential Oil Microcapsules Using Complex Coacervation for Applying as Spot Coating on Food Package

Authors

  • Ratchadaporn Jaimun คณะศิลปกรรมและสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา
  • Nattapong Kanha คณะอุตสาหกรรมเกษตร มหาวิทยาลัยเชียงใหม่

Abstract

The objectives of this research were to produce the orange essential oil microcapsules by complex coacervation for application as the spot coating solution on food packaging, and to study the effects of wall system gelatin-acacia gum (GE-AG) and gelatin-carboxymethyl cellulose (GE-CMC), pH values (3.0, 3.5, and 4.0), and ratios of core to wall material (1:1, 1:2, and 1:4) on the properties of produced microcapsules. The result found that appropriate pH values for producing microcapsules using GE-AG and GE-CMC were 4.0 and 3.5, respectively. While, appropriate core : wall ratios for producing microcapsules using GE-AG and GE-CMC were 1:2 and 1:4, respectively. Microcapsules showed a spherical shape with numerous oil-in-water emulsion cores in the pattern of multicore microcapsules, in which GE-CMC gave the microcapsule wall layer obviously thicker than another one. Therefore, the appropriate conditions for producing orange essential oil microcapsules was use of GE-CMC as wall system and must be formed using 1:4 core : wall ratio at pH 3.5. The obtained microcapsules from such condition exhibited the highest microcapsule yield (55.19 ± 4.30 %), total orange essential oil content (657.17 ± 17.76 mg/g fresh weight), and encapsulation efficiency (88.04 ± 0.90 %). These microcapsules will be further applied as spot coating on food package. Keywords :  encapsulation, complex coacervation, orange essential oil, spot coating, food package

References

Bauer, K., Garbe, D., & Surburg, H. (2001). Common Fragrance and Flavor Materials, 4th Ed, Wiley VCH.
Braun, L., & Cohen, M. (2007). Herbs and natural supplements. An evidence-based guide. Australia: Elsevier.
Burgess, D. J., & Carless, J. E. (1984). Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. Journal of Colloid and Interface Science, 98(1), 1 - 8.
De Kruif, C. G., Weinbreck, F., & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9, 340–349.
Devi, N., Hazarika, D., Deka, C., & Kakati, D. K. (2012). Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. Journal of Macromolecular Science, Part A. Pure and Applied Chemistry, 49, 936–945.
Devi, N., & Maji, T. K. (2011). Study of complex coacervation of gelatin A with sodium carboxymethyl cellulose: microencapsulation of neem (Azadirachta indica A. Juss.) seed oil (NSO). International Journal of Polymeric Materials, 60, 1091-1105.
Dong, Z. J., Touré, A., Jia, C. S., Zhang, X. M., & Xu, S. Y. (2007). Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation.
Journal of Microencapsulation, 24(7), 634–646.
Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104, 455–460.
Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., & Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22, 896–902.
Espinosa-Andrews, H., Baez-Gonzalez, J. G., Cruz-Sosa, F., & Vernon-Carter, E. J. (2007). Gum Arabic–chitosan complex coacervation. Biomacromolecules, 8(4), 1313–1318.
Fernandes, R. V. B., Borges, S. V., Botrel, D. A., Silva, E. K., da Costa, J. M. G., & Queiroz, F. (2013). Microencapsulation of rosemary essential oil: Characterization of particles. Drying Technology, 31,
1245–1254.
Gouin, S. (2004). Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15(7–8), 330–347.
Intrungsi, A. (2016). Visual Communication Design and Brand Buildind. Bangkok: O.S. Printing House Co., Ltd. (in Thai)
Ivanov, I. B., Danov, K. D., & Kralchevsky, P. A. (1999). Flocculation and coalescence of micron-size emulsion droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 161–182.
Jun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125, 1267-1272.
Koh, G. L., & Tucker, I. G. (1988). Characterization of sodium carboxymethylcellulose-gelatin complex coacervation by chemical analysis of the coacervate and equilibrium fluid phases. Journal of Pharmacy and Pharmacology, 40(5), 309–312.
Leclercq, S., Harlander, K. R., & Reineccius, G. A. (2009). Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour and Fragrance Journal, 24, 17–24.
Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release – A review. International Journal of Food Science and Technology, 41(1), 1-21.
Schrieber, R. (1976). Edible gelatin: Types, properties, use and applications in the food industry. Gordian.
356–364.
Tao, N. G., Liu, Y. J., & Zhang, M. L. (2009). Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). International Journal of Food Science and Technology, 44, 1281-1285.
Thimma, R. T., & Tammishetti, S. (2003). Study of complex coacervation of gelatin with sodium carboxymethyl guar gum: microencapsulation of clove oil and sulphamethoxazole. Journal of Microencapsulation, 20, 203-210.
Turgeon, S. L., Schmitt, C., & Sanchez, C. (2007). Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid and Interface Science, 12(4–5), 166–178.
Velázquez-Nuñeza, M. J., Avila-Sosab, R., Paloua, E., & López-Malo, A. (2013). Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control, 31(1), 1-4.
Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control, 19(12), 1130–1138.
Xie, W., Xu, P., & Liu, Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic & Medicinal Chemistry Letters, 11, 1699–1701.
Yang, Z. M., Peng, Z., Li, J. H., Li, S. D., Kong, L. X., Li, P. W., & Wang, Q. H. (2014). Development and evaluation of novel flavor microcapsules containing vanilla oil using complex coacervation approach. Food Chemistry, 145, 272-277.

Downloads

Published

2018-03-13