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Abstract

Computer simulated experiments are often used to explore complex physical phenomena. They are usually

time consuming and computationally expensive to run. Normally, the output responses from computer simulated

experiments are deterministic. Consequently the space filling designs, which focus on spreading design points over a

design space, are necessary. Latin hypercube designs (LHD) are normally practiced in the context of computer

simulated experiments. The best LHD for a given dimensional problem is obtained by using a search algorithm under

a pre-specified optimality criterion. Usually this searching process takes a long time to terminate, especially when the

dimension of the problem is large. A number of search algorithms have been practiced along with the optimality

criteria to search for the best LHD. In this paper we review the popular search algorithms and the optimality criteria

that have been extensively used in the context of computer simulated experiments. The guidelines for the choice of

best search algorithm and further study are also presented.
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1. Introduction

Recently computer simulated experiments (CSE)

have replaced classical experiments to investigate a

physical complex phenomena, especially when classical

(physical) experiments are not feasible.  For example, the

use of reservoir simulator to predict ultimate recovery of

oil, the use of finite element codes to predict behaviour of

metal structure under stress, and so on. The nature of

computer simulated experiments is deterministic; hence

identical settings of input variables always produce an

identical set of output response. Therefore, space filling

designs that aim to spread the design points over a region

of interest are necessary. The most popular class of space

filling design in the context of computer simulated

experiments is Latin hypercube design (LHD). LHD deign,

was originally proposed by Mckay and co-workers

(Mckay et al., 1979), is a matrix (X), of n rows and d
columns where n is the number of runs and d is the
number of input variables. LHD can be constructed based

on the idea of stratified sampling (Mckay et al, 1979) to

ensure that all subregions in the divided input variable

space will be sampled with equally probability. A Latin

hypercube sampling has

(1)

where ij are the elements of an n x d matrix comprising

of columns j (j = 1, 2,..., d). Each column j (j = 1, 2,..., d)
is independent random permutation of number 1 through

n and Uij are n x d values of independent U[0,1] random

variables independent of the ij. An example of LHD is

presented in Table 1.

Table 1 The 5 x 4 random LHD

ij ij
ij

U
X

n
 , 

X
1

X
2

X
3

X
4

1 4 3 1

2 3 4 4

3 2 5 3

4 1 2 2

5 5 1 5

The ultimate goal of selecting the settings of input

variables is to attain the coverage of all design regions of

interest. As mentioned before that the space filling designs

(LHD) are preferred in the context of computer simulated

experiments. Space filling designs can be constructed

through combinatorial methods (non-search algorithm) or

searching for a design through search algorithms. The

former method generates design with good design

properties but it is restricted in terms of a design size. For

example methods proposed by Butler (Butler, 2001) are

limited to a design size of a prime number. The latter

method is based largely on improving design by exchanging

between the pairs of design points. Exchange algorithms

can be time consuming to implement, however, the design

generated are flexible in run sizes. This paper is concerned

with a search based construction of a design using some

kinds of exchange algorithms.

The computer simulated experiments are usually

complex and consist of many input variables to investigate.

In this case a large number of runs are required to estimate

the parameters corresponding to the factors of interest in

the model. For example, if the problem of interest consists

of d input variable and n number of runs, the total number

of LHD is (n!)d. Obviously this number explodes

exponentially as the values of n and d increase; hence
the full space of LHD cannot be explored. In this case we

need the search algorithms to lead us to a good design

with respect to an optimality criterion. The key idea of all

existing search algorithms is to use some kinds of

exchange procedures to move towards the better designs.

The search based approach for selecting a design.

 The search based approach for selecting a desing

is implemented by combining search algorithms and the

optimality criterion. For example, Morris and Mitchell (Morris

& Mitchell, 1995) adopted a version of Simulated Annealing

algorithms (SA) to search for optimal LHDs with respect

to p criterion. Li and Wu proposed a columnwise-pairwise
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algorithm (CP) with respect to the D efficiency criteria

(Li & Wu, 1997). Ye and his co-workers adapted CP

algorithm to search for symmetric LHD under various

optimality criteria such as entropy and p criteria (Ye et

al., 2000). Park proposed a row-wise element exchange

algorithm along with IMSE and entropy criteria (Park, 1994).

Jin et al. developed an enhanced stochastic evolutionary

algorithm to search for the best design considering various

optimality criteria such as a maximin distance criterion,

p criterion and entropy criterion (Jin et al., 2005).

Liefvendahl and Stocki applied a version of Genetic

algorithm (GA) to search for the optimal LHD considering

p and a maximin distance criterion (Liefvendahl & Stocki,

2006). In the following sections we present details of thees

search algorithms and optimality criteria. In this paper we

explore popular search algorithms with a view of providing

practical guidelines for choice of algorithms for searching

designs (LHD) for any dimensional problems.

2. Search algorithms

Usually the best design for a given problem is

selected using a pre-specified search algorithm and

optimality criteria. There are a large number of search

algorithms and optimality criteria (OC) proposed in the

context of computer simulated experiments. In this section

we will explore three of extensively used algorithms namely,

CP, SA and GA. Details of each algorithm are presented

below.

2.1 Columnwise-pairwise search algorithm (CP)

The columnwise-pairwise search algorithm (CP) is

developed to use in the context of computer simulated

experiments by Li and Wu in 1997 (Li & Wu, 1997). CP

aims to search for a better design by exchanging any

pairs within the columns. Main steps of algorithm are

presented below

Step 1 : Start with a random Latin hypercube

design of order n x d.
Step 2 : Each iteration has d steps. At the ith where

i = 1, 2,..., d step, the best exchange (with respect to an

optimality criterion) of points in column i is selected. Then,
the design matrix is updated accordingly.

Step 3 : If the design is better, with respect to the

specified criterion, repeat Step 2. Otherwise it is considered

as an optimal design and the search process is terminated.

It was reported that CP is very simple and easy to

implement. The only parameter that is needed to be set a

priori is the tolerance level (in Step 3). Further, CP is able

to generate a good supersaturated design and it can be

used along with various optimality criteria (Li & Wu, 1997).

In order to avoid the problem of convergence and the

search being stuck at a local optimum value, usually

multiple search with different starting points are performed.

The best result, among different trials, is selected as optimal

design. It should be noted that for large dimensional

problems, CP algorithm can be time consuming to

implement.

2.2 Simulated annealing algorithm (SA)

Morris and Mitchell (1995) developed a simulated

annealing algorithm to search for an optimal LHD using

p optimality criterion. The design that minimizes p value

is considered as the best design in the class. The steps

of SA are presented as follows.

Step 1 : Generate a random LHD of order n by n.
Let the LHD be denoted by X. Calculate the value of

optimality criteria (OC) for X. Let it be denoted by OC(X).

Step 2 : Randomly select a column j of X, randomly

choose two elements (Xaj) and Xbj within column j and
interchange them. Let the new LHD thus generated be

called Xnew.

Step 3 : Calculate the value of optimality criteria

( p criterion) for Xnew, call it OC(Xnew). If OC(X) > OC(Xnew),

replace X by Xnew and go to Step 2. If OC(X) < OC(Xnew),

replace X by Xnew with probability  where,

(2)

where t is an algorithmic parameter, known as the

çtemperatureé. After a given number of perturbations are

tried at the given temperature without improving the best

exp{ [ ( ) ( )] / }newOC X OC X t
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design, the temperature is lowered by the standard factor

and the search is continued. When a large fixed number

of iterations are made with no improvement, the search is

Figure 1 Examples of 9 x 2 optimal LHD based on p optimality criterion

The choice of initial parameters for SA can be

found in (Morris & Mitchell, 1995).  It was also reported in

the paper that SA performed very well in terms of moving

away from the local optimum value of p criterion.

2.3 Genetic algorithm (GA)

Genetic Algorithm (GA) is very popular and is

extensively used in the optimization field. Use of GA to

search for an optimal design for a computer simulated

experiment is proposed by Liefvendahl and Stocki

(Liefvendahl & Stocki 2006). They use a random mechanism

to generate offspring columns from the randomly selected

population of LHDûs. The steps of GA can be summarized

as follows.

Step 1 : Initial population generation. GA starts

with the generation of the population where number of

members in population is pre-specified. Each member of

the population is an LHD of given dimension n and d.
Step 2 : Selection.  A pair of members is randomly

selected to be used in the next step.

Step 3 : Crossover and Mutation. An offspring

LHD is generated by a random mechanism from parent

LHD selected in previous steps. Random mutations are

also applied to offspring columns.

ended and the best design is reported. An example of the

design generated from p criterion is shown in the

Figure 1

Selection and crossover steps are repeated to

generate a new generation. Each generation is evaluated

with respect to an optimality criterion and the best design

is sought. To achieve the best performance of GA, the

best set of parameter is needed to be obtained (e.g. m :

number of population, mi : number of designs generated

in each generation,  : mutation rate). More details on

parameter settings for GA can be found in (Li & Shigeru,

2001; Liefvendahl & Stocki, 2006).

3. Optimality criteria

For a specified number of run (n) and dimension

of the problem (d), the best design in the class of LHD

can be chosen considering the optimality criteria controlling

the spread of points in the design region. There are many

types of optimality criteria proposed to measure how well

the spread of points over the design region is. The best

design can be chosen by minimizing the integrated mean

squared error (IMSE), maximization of entropy (log |R|)

and minimization of maximin distance criteria and aggregate

maximin ( p).

The concept of constructing an optimal design is

based on the idea of searching for a design X*
 that
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unknown and finding the optimal designs is not easy. In

practice, the design X that maximizes            is

considered as the best design in the class, where py is

the probability density function of Y. Therefore, the entropy

criterion is related to the maximization of log      in

Gaussian field. The design is selected if it maximizes

(5)

It can be clearly seen that in order to use the

model dependent criteria. The knowledge of the statistical

models is required. For example, if we treat the response

model as a Kriging model (Bates et al., 1996; Sack et al.,

1989; Welch et al., 1992), the estimation of all unknown

parameters in the correlation function are required.

Unfortunately, in the construction of the design for

computer simulated experiments, the correlation

parameters are not known a priori. There is no way of

estimating these without performing the experiment itself.

This makes the implementation of these criteria impossible

unless we have pilot data or guess estimate the values of

parameter of the correlation function.

3.2 Model independent criteria

In contrast to the model dependent criteria, these

criteria do not require any knowledge of the statistical

models. Therefore, these criteria are easier to implement

in practice. In this section we will describe 2 types of

optimality criteria which are commonly used in the context

of computer simulated experiments.

• Maximin distance criterion

Maximin distance criterion was developed by

Johnson et al. (Johnson et al., 1990). Any design X is

called a maximin design if it maximizes the minimum

intersite distance:

(6)

where d(Xi, Xj) is the Euclidean distance between ith and
jth design points:

(7)

optimizes a pre-specified optimality criterion. There have

been several kinds of optimality criteria in the context of

computer experiments as indicated in the previous section.

These criteria could be classified into 2 main groups.

3.1 Model dependent criteria

The model dependent criteria require the knowledge

of the statistical model to implement. These criteria are

listed below.

• Integrated mean square error (IMSE)

This criterion was proposed by Sacks et al. (Sacks

et. al., 1989).  It is based on the idea of selecting Xij, so as

to minimize the MSE of prediction. The best design  X is

selected to minimize,

(3)

where      is the fitted value of the output response

from Kriging approximation model (Sacks et al., 1989;

Koehler & Owen, 1996).

For a given weight function (x) and the value of
       defined as

(4)

where f(x), r(x), F and R are terms specified by the

design matrix and the output response from Kriging

approximation model (Bates et al., 1996; Morris & Mitchell,

1995; Sacks et al., 1989). The integral is usually calculated

through the numerical approximations and parameters of

the correlation matrix R (see Sacks et al., 1989 for more

details) are pre-specified.

• Entropy criterion

Entropy criterion was first applied in designs for

spatial models by Shewry and Wynn (Shewry & Wynn,

1987). The authors showed that minimizing the posterior

entropy is equivalent to maximizing the prior entropy. The

idea of this criterion is that the amount of information in a

design matrix depends on the prior knowledge of

distribution of Z(x) and R(x). Usually, the prior of R(x) is

ˆ[ ( )] ( )
x
MSE y x x dx

ˆ[ ( )]MSE y x

)(

)(0
))()((1)](ˆ[

1

2

xr

xf

RF

F
xrxfxyMSE

T
TT ,

| |R

logEntropy R

. .
1 ,

maximin min ( , ) ;i j
i j n

d X X i j

Anamai Na-udom* / Burapha Sci. J. 13 (2008) 2 : 67-73 71



1/

1 1

1
p

n n

p p
i j i ijd

This criterion guarantees that the design points

are not close to each other. It also reduces the problem

of singularity of the correlation matrix (R) in a Kriging

modelling method.

• The p criterion

Morris and Mitchell proposed an extension to the

maximin distance criterion to search for the optimal design

(Morris & Mitchell, 1995). The method starts by calculating

intersite distances d(Xi, Xj) between all design points (i, j
= 1, 2,..., n). Let (d1, d2,..., dm) be the list of distinct distances

arranged from smallest to the largest and (J1, J2,..., Jm) is

the number of pairs of sites in the design separated by

distance dj, where 1 ≤ m ≤

The design for which d1 is maximized is referred to

as a maximin design. This idea is extended by inclusion

of all elements in the distance and index list as follows:

• (1a) maximizes d1, and among designs for which

this is true;

• (1b) minimizes j1, and among designs for which

this is true;

• (2a) maximizes d2, and among designs for which

this is true;

• (2b) minimizes j2, and among designs for which

this is true;

•

• (ma) maximizes dm, and among designs for

which this is true;

• (mb) minimizes jm, and among designs for which

this is true;

By this idea, the criterion p can be calculated

from the following equation

(8)

, where p is a large enough positive integer, Jj and dj are

specified from X. Morris and Mitchell suggested the choice

of p as the smallest value for which p and maximin

distance criteria agree on the best design (Morris &

2

n
.

Mitchell, 1995). In practice, a common robust value of p is
5. Later, the adaptive form of p which is simpler than an

equation (8) to implement is considered (Jin et al., 2005;

Leary et al., 2003). This form can be expressed as follows.

(9)

The visualization of the design generated from p criteria

is already displayed in Figure 1.

4. Concluding remarks

In this paper we have explored the search

algorithms, CP, SA and GA, commonly used in the context

of computer simulated experiments. According to the

results, published in the literature so far, including our

own empirical studies. The following conclusions would

be made.

1. CP algorithm is recommended for small

dimensional problems.  However, multiple searches with

different starting points should be performed (for more

details, see Leary et al., 2003; Li & Wu, 1997; Liefvandahl

& Stocki, 1996).

2. If there is no restrictions on time constraint, SA

would be the best choice since it is robust to different

starting points. Further, SA is better than CP or GA in

terms of moving away from a local optimum value of

optimality criteria (Morris & Mitchell, 1995; Li & Shigeru,

2001).

3. For a large dimensional problem (d ≤ 10), GA

seems to be the best choice to use. However the parameter

selection in the crossover and mutation step is needed to

be made with care (Li & Shigeru, 2001).

4. The model independent criteria are more

preferable than the model dependent criteria since the

knowledge of model for computer simulated experiments

is not known a priori (Johnson et al., 1990; Ye et al.,

2000).

In addition to CP, SA and GA, other search

algorithms like Tabu search, stochastic evolutionary

algorithm etc. can be investigated.  The technique of particle

swarm optimization can also be developed in this area of

research.

1/

1

p
m

p
p j j

j
J d
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