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Abstract

This article explains how the round robin tournament schedule is constructed and then used to construct the

new proposed test suite, which meets the requirement that each value must be in a pair of test cases. The connection

of pair-wise test case generation and the social square scheduling is also discussed.
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Round-Robin Tournament

A round-robin tournament, or all-play-all tournament,

is a type of group tournament in which each participant

plays every other participant an equal number of times.

(DeVenezia, 2006; Wikipedia, 2007). In a single round-robin

schedule, each participant plays every other participant

once. If each participant plays all others twice, this is

frequently called a double round-robin. The term round-

robin is derived from the French term ruban, meaning

çribboné. Over a long period of time, the term was corrupted

and idiomized to robin.

To illustrate: Let us consider a chess tournament

which consists of 6 players. Each player has to compete

with every other player once. Since there are 2 players in

a match, there must be      = 15 matches (pair of players).

Suppose that each player plays once on each day (which

we shall call a çroundé). Then there are at most 3 matches

in a round, and at least 5 rounds of competitions. Suppose

A, B, C, D, E, F are players, the first round may consist of

AB, CD, EF (means A plays B, C plays D and E plays F).

The second round may be AC, BE and DF. Note that

Round 2 cannot be AC, BD since it would E and F matched

together again. A complete 5 round schedule may be as

follows:

Round 1: AB, CD, EF

Round 2: AC, BE, DF

Round 3: AD, BF, CE

Round 4: AE, BD, CF

Round 5: AF, BC, DE

With a small number of players, the schedule is not

very difficult to construct using a trial-and-error method.

But, in general, constructing the schedule by utilizing such

a method is not an easy task. (To appreciate the problem

the reader should try to construct a schedule for 10 players.)

However, there is an amazingly easy algorithm that can

generate a complete schedule for the tournament. The

following schedule algorithm is employed from Wikipedia

(Wikipedia, 2007).

If n is the number of competitors, a single round-

robin tournament requires      =    n(n - 1) matches and

n - 1 rounds; each round contains    matches.

Algorithm 1: (Case: n is even)

Step 1: Write down all players in the 2 x    matrix.

Suppose the players are 1, 2, 3, . . . , n,  we write

The matrix illustrates the schedule of the first round. Each

player in the first row plays the player in the same column

in the second row. That is: 1 plays 2, 3 plays 4, . . . and so

on. The last column shows that the player n-1 plays n.

Step 2. Fix one competitor (number one in this example)

and rotate the others clockwise.

We obtain the second round schedule:

Continue this process we finally get the complete round-

robin schedule.

If n is odd, a dummy player can be added, whose

scheduled opponent in a given round does not play and

has a bye.

The Social Square
Suppose there are n2 players. On each day (round)

all of these players are grouped into n groups with n

players in each group. We want to plan a schedule in such

a way that in each round, each player is grouped with all

new players; in other words, each one is grouped with

each of the other players only once (DeVenezia, 2006).
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1        3      5   . . .    n-3       n-1 

2       4      6    . . .     n-2         n 
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Õ”æ≈  ∏√√¡‡®√‘≠ / «“√ “√«‘∑¬“»“ μ√å∫Ÿ√æ“. 14 (2552) 2 : 111-117112



Step 2: Transpose the Round 1 matrix to derive the

Round n+1 schedule. In other words, the Round n+1 matrix

has the entries:

aij = n(j - 1) + i.

The result is the set of n+1 matrices representing the

social square schedule.

The proof of validity of the result is not difficult and

will be omitted.

Software Testing
Introduction:

Testing and other fault detection activities are crucial

to the success of a software project. (Grindal et al., 2004).

Before the software is released to the public, it should be

tested to ensure that it is fault free. The software test

process involves identifying sufficient input test data to

validate requirements of a product.

Software generally consists of functions. Each

function consists of commands, input data, interface and

others, which are called parameters or variables. Each

parameter has elements which are called levels or values.

(Phadke, 1997)

To illustrate the testing scenario, let us consider an

example of testing the send function of a fax machine. The

parameters are the followings: A, the time of transmission,

its levels being çsend it now,é çsend it an hour later,é or

çsend it after midnighté; B, the recipientsû telephone

numbers, and its levels are a single telephone number

entered now, telephone numbers selected from quick-dial

memory, or multiple numbers entered for broadcast

transmission; C, the interruption during transmission, and

its levels could be no interruption in the telephone line

during transmission, line cutoff during transmission, and

the telephone line becoming noisy, which requires a drop

in the transmission speed, and so on. The software has to

perform well for all possible values of these parameters.

The techniques of software testing can be classified

into two categories, white box and black box. (Jorgensen,

1995; Phadke, 1997). Black box testing treats the software

Since during each round, each player must meet n - 1

players, then there must be n + 1 rounds to complete

meeting all n2 - 1 players.

The social square is considered to be a generalization

of the round robin tournament in which each match contains

more than two players. Here is an example of the social

square with 32 players, named 1, 2, . . . , 9.

Round 1: Round 2:

Group: 1 2 3 Group: 1 2 3

1 2 3 1 2 3

4 5 6 6 4 5

7 8 9 8 9 7

Round 3: Round 4:

Group: 1 2 3 Group: 1 2 3

1 2 3 1 4 7

5 6 4 2 5 8

9 7 8 3 6 9

There are three groups in each round. In Round 1, the

groups are 147, 258 and 369. (The group 147 contains the

player 1, 4 and 7.) Round 2 consists of the group 168, 249

and 357. Round 3 are 159, 267 and 348, and Round 4 are

123, 456 and 789.

There are algorithms for generating the complete

schedule for n2 players where n is a prime number. The

schedule for non-prime n is possible, (for n = 4 see

DeVenezia, 2006) but the algorithm in general is not known.

Algorithm 2: (Constructing the social square schedule where

n is a prime.)

Step 1: For k = 1, 2, . . . , n, construct the n x n matrix

whose entries are as follows:

For i = 1, 2, . . . , n;  j = 1, 2, . . . , n,

p = [kn › (i-1)(k-1) + j - 1] (mod n)

aij = n(i - 1) + p + 1,

For each k the result matrix is the Round k schedule,

with each column representing the group. Note that the

Round 1 schedule matrix has the entries:

aij = n(i - 1) + j.

...................................... ......................................

...................................... ......................................
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testing wants to do is plan the test suite that can detect all

the faults, that is the all coverage test. (Phadke, 1997;

Bolton, 2004). This aim leads to the all combination testing,

which generally has a huge number of test cases. For

example, if the function we want to test has 4 parameters,

and each parameter has 3 values, then all combinations

testing could have 34 = 81 test cases. Thus all combination

testing becomes unfeasible when the number of parameters

and values are large.

The pair-wise or all pairs test is designed to detect

the single and double mode faults. The test suite must be

such that each pair of values from different parameters

has to be in at least one test. This is the all pair coverage.

The all pair test may not detect the multiple-mode faults,

but the risk of having that type of fault is small. (Phadke,

1997; Bolton, 2004). Suppose that the system under testing

has k parameters, with n values each, the number of pair-

wise test cases is n2, provided that k ≤ n + 1. For example

as in the above paragraph, n = 3 and k = 4, the number of

pair-wise test cases is 9.

Generating the pair-wise test suite is generally a

difficult task, but there are good algorithms provided by

Maity and Nayak. (Maity & Nayak, 2005)

To detect all the single-mode faults, the test suite

must contain all values from all parameters; this may be

called 1-wise coverage. Then each choice combination

strategy will include each value of each parameter in the

test case in the easiest way. Suppose that there are 4

parameters, A, B, C and D, and each parameter has 3

values, 1, 2 and 3. The each-choice combination test suite

could be as follows: (Phadke, 1997; Grindal et al, 2004)

Test 1 = (A1, B1, C1, D1)

Test 2 = (A2, B2, C2, D2)

Test 3 = (A3, B3, C3, D3)

Note that there are only 3 test cases. It is easily seen that

when a value causes the fault, it must be shown in some

test cases. The weak part of this strategy is that it cannot

identify which value causes the fault.

as a black-box without any understanding as to how the

internals behave. It aims to test the functionality according

to the requirements. White box testing, however, is when

the tester has access to the internal data structures, codes,

and algorithms. The term grey box testing is sometimes

used when the designing of the test cases involves having

access to internal data structures and algorithms, but testing

at the user, or black-box level.

The faults in the software, caused by some values

in some parameters, can be detected when the computer

with given phenomenon behaves abnormally. (Phadke, 1997;

Bolton, 2004). Designing the test case is aimed at detecting

all the faults the software has. The simplest kind of fault is

that which is caused by a single variable in a single state.

This is called a single-mode fault. The double-mode fault

is the fault caused by the interaction of two values in

different parameters. The triple-mode fault, or more generally,

the multi-mode fault, is the fault caused by the interaction

of three or more values. It is believed that most faults were

of the single-mode fault or the double-mode fault variety.

The multiple mode faults are not as likely to occur, and

may be neglected in some testing (Bolton, 2004).

Test case generating:

A test case is a set of values from each parameter.

In testing we deal with how to construct the test cases,

which consists of implementing the parameters and their

values to be appropriated for test, and specifying or selecting

values for the test case. For example in a registration form,

a user has to input his name which is a group of alphabets

up to 20 characters long. After some implementation the

values of this parameter could be çno inputé, a name with

1 character, a name with 20 characters, and a name with

21 characters. The implementation part could be done by

the boundary value analysis method or the equivalent class

method (Jorgensen, 1995). In this article we focus on the

strategy of selecting the test cases for the test suite that

achieves the purposes.

Assume that we are given the parameters and their

values to be tested. The first thing every one involved in
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Another 1-wise coverage method is the base choice

combination. It starts by identifying one base test case.

From the base test case, new test cases are created by

varying the values of one parameter at a time, keeping the

values of the other parameters fixed on the base test case.

(Phadke, 1997; Grindal et al, 2004). For example as in the

above paragraph, the base choice combination test suite

is as follows: (We write 2111 instead of (A2, B1, C1, D1)

for short.)

Test 1 = 1111 (as a base)

Test 2 = 2111

Test 3 = 3111

Test 4 = 1211

Test 5 = 1311

Test 6 = 1121

Test 7 = 1131

Test 8 = 1112

Test 9 = 1113

The advantage of this method is that it can identify which

value caused the fault. For example, suppose that all test

cases work properly except Test 2. From this, it is possible

to derive that the value A2 caused that fault. Note that

there are 9 test cases. If the system under test has k

parameters, with n values each, the number of base-choice

combination test cases is k(n - 1) + 1. As in the example,

if we have n = 3 and k = 4, then the number of test cases

is 4(3 - 1) + 1 = 9.

Proposed Method and Algorithm
Here we propose a 1-wise coverage method. The

strategy is that each value must be in a different pair of

test cases. By this method, all values that cause a single-

mode fault will be detected and identified. For example as

in the example shown above, the test suite consists of the

following 6 test cases:

Test 1 = 1111 Test 4 = 2312

Test 2 = 1222 Test 5 = 3231

Test 3 = 2133 Test 6 = 3323

If Test 3 and Test 5 show an unexpected result, then it

must be because of the value C3. The test suite can work

as well as the base-choice combination while the number

of test cases from this method is lower.

Let us introduce the two basic properties:

Property 1: If the system has k parameters, with n values

in each parameter, the number of test cases is 2n, provided

that k ≤ 2n - 1.

(As in the example, if we have n = 3 and k = 4, then the

number of test cases is 2 x 3 = 6.)

Proof: The number 2n is derived from the fact that each

value has to be in a pair of tests. We have k parameters

and each parameter has n values, therefore there must be

kn values in the system.

From 2n test cases there are      = n(2n - 1) pairs of

test cases. So, we have the condition n(2n - 1) ≥ kn,

which can be reduced to k ≤ 2n › 1. //

Next we compare the number of test cases of the

new method to the base-choice combination method.

Recall that the number of test cases of the new

method is 2n, and that of the base-choice combination

method is k(n - 1) + 1. We see that the inequality

2n ≤ k(n - 1) + 1

is equivalent to

    k ≥ 2 +       . ------------------(A)

Assume that n > 1, then the inequality (A) is true provided

that k > 2. So, we draw the conclusion:

Property 2: If there are more than two parameters in the

system, and more than 1 value in each parameter, then the

number of test cases of the proposed method is less than

that of the base-choice combination method.

The algorithm below generates the test suite by the

proposed strategy. Let the system have n parameters, and

each parameter have n values. Also, let k ≤ 2n - 1.

Algorithm 3:

Step 1. Construct the round robin tournament schedule of

2n players.

2

n2

1n

1
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Step 2. Map the table from step 1 to the test case table.

Each round corresponds to the parameter, and each pair

corresponds to the pair of test cases in which the value is

put.

Example: Let n = 3 and k = 4. (We have k ≤ 2n › 1.)

There are 6 test cases.

Step 1: We have the table of a round robin

tournament

Round: 1 2 3 4

pair: 12 13 14 15

34 25 26 24

56 46 35 36

Step 2: The ith row of pair indicates the test case

which the value i is to be inserted. Let us consider Round

1 which corresponds to parameter A. The pair 12 in the

first row indicates that the value 1 has to be inserted in the

Test 1 and Test 2; the pair 34 in the second row indicates

that the value 2 has to be put in Test 3 and Test 4. Continue

this process until we have the complete table:

Parameter: A B C D

Test 1: 1 1 1 1

Test 2: 1 2 2 2

Test 3: 2 1 3 3

Test 4: 2 3 1 2

Test 5: 3 2 3 1

Test 6: 3 3 2 3

This is the same test suite as shown before.

What happens if the numbers of values in parameters

are different? In this case the number of test cases is

twice the maximum number of values in the parameters.

Some values in the small parameter may appear in more

than two test cases. It is not difficult to see that Property

2 is also true in this case.

If there are too many parameters, i.e. if k > 2n -1,

more test cases must be added to the test suite so that

the number of pairs of test cases is larger than the number

of values. For example, 8 test cases can handle up to 9

‹

parameters with 3 values each. In this case, some values

must appear in more than two test cases.

If we use the strategy that 3 test cases specify a

fault value, if n = 3 then 9 test cases are required. The

number of different 3-test-case sets is     = 84. So the

test suite can handle up to 84 values, or 28 parameters.

The pair-wise test suite and the social square

schedule
Here we give a table of pair-wise test suite for 4

parameters, with 3 values each. The test suite consists of

9 test cases. (Bolton, 2004; Maity & Nayak, 2005)

Test 1 = 1111 Test 6 = 2312

Test 2 = 1222 Test 7 = 3132

Test 3 = 1333 Test 8 = 3213

Test 4 = 2123 Test 9 = 3321

Test 5 = 2231

It is not difficult to see that the pair (i, j) is contained in

some test cases. For example, the pair (A1, B3) is in Test

3; (B2, C1) is in Test 5; (A2, C2) is in Test 6.

Let us recall the social square schedule for 9 players

which are grouped into 3 groups for each round. We rewrite

them in the new matrix form in such a way that each

round is listed in columns while each group is listed in

rows, correspondingly. For convenience, we rotate the

column from 4 to 1, 1 to 2, and so on. Now, the columns

represent the parameters, the rows represent the values,

and the number in the rows represent the test case number

that contains that value.

Column: 1 2 3 4

123 147 168 159

456 258 249 267

789 369 357 348

Next we map the table into the test case table using the

rule mentioned above. For example, the number 123 in the

first row and first column means that the value 1 of

parameter A has to be put in Test 1, Test 2 and Test 3; the

3

9
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number 357 in the third row and third column means that

the value 3 of parameter C has to be put into Test 3, Test

5 and Test 7. After finishing the mapping we obtain:

Parameter: A B C D

Test 1 1 1 1 1

Test 2 1 2 2 2

Test 3 1 3 3 3

Test 4 2 1 2 3

Test 5 2 2 3 1

Test 6 2 3 1 2

Test 7 3 1 3 2

Test 8 3 2 1 3

Test 9 3 3 2 1

This table shows the same pair-wise test suite as given

before.

We shall prove in general that the test suite generated

by the social square schedule is pair-wise.

Proof: Let us consider the system of k parameters, with n

values each. Suppose that we have the social square for

n2 people, which consists of n + 1 rounds. So, the number

k must be less than or equal to n + 1. The test case table

mapped from the social square schedule has n2 rows and

n + 1 column; each row (test case) corresponds to the

player and each column (parameter) corresponds to the

round.

In each column, each value must be contained in n

test cases. This is derived from the fact that each group

consists of n players.

We will show that each pair of values (i, j) is contained

in not more than one test case.  Consider any two columns,

say A and B. Suppose that the value i of A is in Test p and

Test q, if the value j of B is in Test p, then that value must

not be in Test q. This is because Test p (player p) must

meet Test q (player q) once.

Next, we will show that each pair of values (i, j) in

columns (A, B) must be contained in some test case. For

each column, we have n groups of test cases and each

group corresponds to each value. Since the value j of B

‹

must be in only one test case in one group of A, then each

value j of B has to be in one test case in each group of A.

That is, the pair (i, j) is in the same test case. Thus, the

table is the pair-wise test suite. //

Conclusion
We have shown that the round-robin tournament

scheduling can be used to generate the test suite for

software testing. The proposed method based on the

strategy that a value must be contained in two or more

test cases, produce the 1-wise coverage test suite with

the less number of test cases than that of the base-choice

combination method. In practice, if we know in advance

that there is no relation between parameters so that the

pair-wise testing is unnecessary, then using the proposed

test suite will save time and energy greatly.
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