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Abstract
In this paper, we study Diophantine equations p** +q’ =z*and p** —q’ =z, where pand qare

primes. We found that all non-negative integer solutions of the Diophantine equation p2X +qy =7*are of the

following (P, ., ,2) €{(3,7,11,2)} U {( p.2.Llog, (p+1)+2,/p+2)| Iogz(p+1),\/m€Z}

u{(2,17,3,1,3)} and all non-negative integer solutions of the Diophantine equation pzx -q’ = z*are of the

following (p,q,x,y,z)e{( p,q,l,logq(Zp—l),\/Eﬂ Iogq(2p—1),\/ﬁez}u
{( p.2.1log, (p-1)+2,/p-2)| Iogz(p—l),\/mez} U{(,4,0,0,0)} L{(p,p,u,2u,0)uez’}.

Keywords : Diophantine equation ; Catalan’s Conjecture
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Introduction

A Diophantine equation is an equation in which only integer solution is allowed. Many research studies
about Diophantine equations are ancient. However, no general methods for finding a solution of a given equation
exist. The well-known Diophantine equation of the form a* +b”’ = z%has been studied by many researchers. For
example, Chotchaisthit (2012) found all non-negative integer solutions of the Diophantine equation 4* + py =7,
Later, Chotchaisthit (2013a) showed that (3,0,3) is the only non-negative integer solution of the Diophantine
equation 2% +11Y = 7° ,(p,x, Y, Z) :(7,0,1,3) and (p, X, Y, Z) =(3,2,2,5) are the only two solutions of the
Diophantine equation p* +(p+1)y = 22, where X,y and Z are non-negative integers and P is a Mersenne
prime (Chotchaisthit, 2013b). Many related research was solved as seen in literature (Suvarnamani et al., 2011;
Singha, 2021; Sroysang, 2012; Bacani & Rabago, 2015; Burshtein, 2018; Dokchan & Pakapongpun, 2021; Mina &
Bacani, 2021)

In 2017, Burshtein (2017) showed for all primes p=>2andy=1, that the Diophantine equation

p* +q’ =z has infinitely many positive integer solutions (X, g, Z) .
Later, Burshtein (2021) proved that the Diophantine equations p4 iqy =2z"have no solution, when
P, q are distinct primes, and Y, Z are positive integers.

Inspired by the works mentioned earlier (Burshtein, 2017, 2019, 2020, 2021; Mina & Bacani, 2019), we

will find all non-negative integer solutions (X, y,z) of the Diophantine equations p2x +q’ = z* , where p and

g are primes.

Methods
In this section, we give some helpful Theorems for this study.
Theorem 1 (Catalan’s conjecture) (Mihailescu, 2004) (3,2,2,3) is the only solution (a,b,x, y) to the Diophantine
equation a*—b” =1, where a,b,x and y are integers with min{a,b,x, y} >1.
Theorem 2 (Burshtein, 2021) Let Y and Z be positive integers. For all three possibilities
(@ p=2 and Qan odd prime,
(b) panoddprimeand q=2,
(c) Pp,qdistinct odd primes,
the equation p4 +q’ = z* has no solution.
Theorem 3 (Burshtein, 2021) Let y and Z be positive integers. For all three possibilities

(@ p=2 and Qan odd prime,
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(b) panoddprimeand q=2,
(c) p,qdistinct odd primes,
the equation p4 -q’ = z* has no solution.
Inspired by Burshtein’s results, we are interested in finding all non-negative integer solutions of the

Diophantine equations p* +q* =z*.

Results

In this section, we find all non-negative integer solutions (X, y,z) of the Diophantine equations
p>+q’ =z*, where p and Q are prime numbers.

First, we consider the Diophantine equation pzx +q’ = z*, where p and Q are prime numbers.
Theorem 4. For any prime numbers pand (, let

A={(37,112)},

B ={(p,2,1,|ogz(p+1)+2, p+2)| Iogz(p+1),\/m€z} ,
C={(217,313)}.

Then(P,0,X,Y,2)€ AU BUC are all non-negative integer solutions of the Diophantine equation p** +¢” = z*.
Proof. Let X,y and Z be non-negative integers such that (p,q, XY, Z) is a solution of the Diophantine

equation p**+q’ =z". Since z*—p* =q’, we have (Z2

- px)(z2 + px)zqy. Then there exists a non-
negative integer U such that z°—p*=q" and Z°+p*=q¢'". Thus 2p*=¢’ (qy’zu —1), which
implies Yy —2u >1. Moreover, it is clear that gcd(q”,qyf2u —1) =1

Consider the following cases:

Case 1: U=0. We have z°—p*=1.1f x=0, then z*> =2, which is a contradiction. If X =1, then
2’ —p=land 2p+1=q’,so p=2"-1.Thus z=2,p=3,4=7 and y=1.Thus (P,q,X,Yy,2)€A.

If Xx>1, itis easy to check that z>1. By Catalan’s conjecture, we get Z=3, p=2 and X=3. Since
2’ + p*=q’, itimplies that Q=17 and y =1. Then (p,q,x, y,Z)eC )

Case 2: U>0.

Case 2.1: p=2. We have 2" =q" (qy’zu —1). Since gcd(q”,qyf2u —1)=land u>0 , we get
q" =2 It follows that q=2and U=X+1.So z* =2"+2*" =3.2" which contradicts the fact that Z is an
integer.

Case 2.2: p#2.Thus ng(Z, px)zl. We consider the following 2 cases.
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Case 2.21: 2=0"® -1 and p*=q".If p#Q.then Xx=u=0,s0 z°=1+1=2, whichisa
contradiction. If p=g#2,then X=U, so 7° = 2qu , Which is impossible.

Case 2.22: 2=Q" and p*=q"® —1.Weget =2and u=1,s0 p*=2"7%-1.
lfXx =0, then 22 =2 which implies that Yy =3. Hence z* =3, which is a contradiction.
fx=1, then2’?=p+1, soyzlogz(p+1)+2. We also get thatz’=p+2, ie; sz.
Then (P,Q,X,Y,2)€B.
Incase X >1,we have y—2>1 and 2% — p* =1, so it is a contradiction to Catalan’s conjecture. This

finishes the proof.

Example 1. Let p=7and q=2. We have |ng(p+1)+2=5 and M:& By Theorem 4, the

Diophantine equation 72* +2¥ =z* has only one non-negative integer solution (X, Y, Z) = (1,5,3).

Next, we consider the Diophantine equation pzx -q’ = z*, where p and Q are prime numbers.

Theorem 5. For any prime numbers pand (, let

A:{(p,q,l,logq(2p—1),‘/p—1)| Iogq(Zp—l),Jp—leZ},
{(p 2,1log,(p-1)+2,/p- )|I0g2 (p- l)Jp—ZEZ},
(

B =
C={(p.,q,0,0,0)},

D= {(p p,u,2u,0) |UEZ+}

Then (p,q,x, y,Z)eAUBUCuD are all non-negative integer solutions of the Diophantine equation

pZX_qy 224.

Proof. Let X,y and Z be non-negative integers such that (p,q, X, Y, Z) is a solution of the Diophantine
equation p>* —q* =z*. Thus (pX —22)( p* +22)=qy. Then there exists a non-negative integer U such
that p* —2° =q" and p*+2°=q"", s0 y>2u and 2p* =q"(g"* +1).

Consider the following cases:

Case 1: U=0. We have z° = p* -1.

If z=0,then Xx=0and y=0, so (p,q,x,y,z)eC .

Let z>1 Weget x>1 .If x=1,then 2°=p-1,s0 z=4/p-1.

Since q” = p*+2°=2p—1,we have y=log,(2p—1).Hence (p,q,X Y,z)€A.

In case of X>1,we get Z>1 and pX — 72 =1, which contradicts Catalan’s conjecture.
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Case2: U>0.1f y—2u=0,then y=2u ,so 2p" =2q”.Thus(p,q,X,y,Z)eD.

Let y—2u>1. We have gcd(q”,q"_2LI +1)=1. Obviously, p#2. Since 2p* =q" (qy_zu +1), the
only possible case is q" =2 and p*=q”® +1. Thusq=2and u=1. It follows that p*=2""%+1.
We get x>1.

If x=1,thenp=2"2+1,so0 y=|0g2(p—1)+2 and z:\/ﬁ.Then (p,q,x,y,z)e B.

Let x>1. It follows that y—2>1. By Catalan’s conjecture and the fact that p* —2Y2=1 we get

pPp=3,Xx=2and y—2=3.Hence z° =7, which is a contradiction. This completes the proof.

Example 2. Let p=3 and g =2. We have |ng(p—1)+2=3 and\/ﬁzl. By Theorem 5, the
Diophantine equation 3% —2Y =z%has only two non-negative integer solutions (X, y,z)=(1,3,1) and
(x,y,2)=(0,0,0) .

Example 3. Let p=2 and q=3. We have log,(2p—-1)=1 and \/mzl. By Theorem 5, the
Diophantine equation 2% —=3' =z*has only two non-negative integer solutions (x,y,z):(l,l,l) and

(x,y,2)=(0,0,0) .

Discussion

In this paper, we obtain all non-negative integer solutions (X, y,z) of the Diophantine equations
p>*+q’ =z%and p* —q’ =z, where pand q are prime numbers. A possible generalization of our results is
to find all integral solutions (X, y,Z)of the Diophantine equations p* +q’ =z*, where pand Q are prime

numbers.

Conclusions
In this paper, we get all non-negative integer solutions (X, y,z) of the Diophantine equations

p>*+q’ =z%and p* —q’ =z*, where pand q are prime numbers.
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