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Abstract

In this paper, we will present new singular matrices of three-by-three dimensions, whose entries of any

n" powers of matrices are related to k -Pell and k -Pell Lucas numbers.
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Introduction

The sequence of real numbers has been widely studied in field of science over several years. Fibonacci
{ Fn}ne‘ and Lucas { Ln}ne numbers are one of well-known numbers that have defined recursively by
n>2, (1)
and
n> 2, (2)
with initial conditions F; = 0,F =1 and L, = 2,L, =1, respectively.

Many researchers have been studied these numbers in different ways such as their basic properties and

generalizations. For any positive real number k , the k -Fibonacci numbers {Fk'n}ne‘ is one of generalization of
Fibonacci numbers which was introduced by Falcon (Falcon & Plaza, 2007). It is defined recursively by

Fo.=kF  ,+F ., nz2, (3)
with initial conditions F, ;= 0,F, , =1.In particular case, when k =1, it reduces to the classical Fibonacci
numbers, and when k = 2, it reduces to the Pell numbers {Pn}ng which is as important as Fibonacci numbers.
It was introduced by Horadam (Horadam, 1971) that defined recursively by

P =2P +P

W= 2P+ P, n22, (4)
with initial conditions P, = 0, P, =1. In addition, the Pell numbers associated to the Pell-Lucas numbers
{Qn}ng‘ because they have the same recurrence relation but the initial conditions are distinct. The Pell-Lucas
numbers is defined recursively by

Q,=2Q,,+Q,,, n>2,, (5)
with initial conditions Q, = Q, = 2.

Moreover, the basic properties, identities and generalizations of Pell and Pell-Lucas numbers have also

been studied by several authors. For example, Catarino and Vasco considered generalizations of Pell and Pell-Lucas

numbers, namely k -Pell numbers {Pk,n} and k -Pell Lucas numbers {kan} . (Catarino, 2013; Catarino &

nel ne

Vasco, 2013). The k -Pell numbers is defined recursively by

P =2P

k,n k,n

L, + kP n> 2, (6)

k,n-2"

with initial conditions P, ; = 0, P, , =1 .The k -Pell Lucas numbers is defined recursively by
Qun=2Q,,,+kQ,  ,, nz2, (7)
with initial conditions Q, , = Q,, = 2.
Furthermore, the study of matrices which entries of n" power matrices are elements of sequences of

real numbers, have been appeared in many research. For example, Silvester (Silvester, 1979) studied on
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[0 1]
Fibonacci numbers and investigated 2 x 2 matrix that obtained n" power matrix as follows: A = L J
1 1
o1 TR , 11 5]
then A = .In 2010, Koken and Bozkurt (Koken & Bozkurt, 2010) showed that if S = —
NN 2[1 1]
.1 [L, 5F 1] [0 1]
then S = — . Catarino (Catarino, 2013) defined 2x2 matrix as T = then
2 LFH L, J Lk ZJ
no_ |—kPk n-1 Pk,n —I
|_ I(pk n Pk,n+l

In 2018, Karakaya (Karakaya, 2018) developed a method for deriving 3 x 3 matrices whose powers are
related to Fibonacci and Lucas numbers. After that, based on this approach, several authors have been
developed the method to introduce 3 x 3 matrices whose elements of n" power matrices related to different
types of sequences such as Cerda-Morales, Koken and Petik et al. (Cerda-Morales, 2019; Koken, 2020; Petik et
al, 2021)

In this paper, we will derive new 3 x 3 singular matrices through entries of n' powers of matrices
whose are related to the k -Pell and k -Pell Lucas numbers. The organization of this paper is as follows.
We discuss the important properties and relation between k -Pell and k -Pell Lucas numbers in Section 2.
The method for deriving matrices whose powers are related to the k -Pell and k -Pell Lucas numbers is
introduced. Some special 3 x 3 nonsingular matrices are presented in Section 3. Finally, a discussion and

a conclusion are provided in Section 4 and Section 5, respectively.

Methods
In this section, we consider k -Pell and k -Pell Lucas numbers which are defined in (6) and (7)
respectively. For a present study, we are interested in the important properties of these numbers and their

relations as follows:

h

Proposition 1. According to Binet's formula (Catarino, 2013), the n" of k -Pell and k -Pell Lucas numbers which

are given respectively:

Pkn = - : (8)
’ n-n
and
Q= Hn+ G1 (9)
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where r =1+ \/1+ k and r,=1-+1+k are the roots of the same characteristic equation which is

x?-2x-k=0.

From Proposition 1, solving equations (8) and (9) express r," and r," in terms of sequences. Then, for any

integer n , we have

L1

r :;(Qk,n+2pk,n 1+k) (10)
and

L1

r, =;(Qk,n—zpk,n 1+k). (11)

Proposition 2. (Catarino, 2013; Vasco et al., 2015) For any positive real number k and positive integer n , the
relationships between k -Pell and k -Pell Lucas numbers as follows:

1. 2P -2P . =Q,,

k,n+1

2.2P,  +2kP . =Q,

k,

3. (2+2k) Poo=Q., tkQ

k,n-1

Note that: The Proposition 2 holds for Pell and Pell-Lucas numbers when k = 1.

Results
In this section, we introduce a method to find some special matrices whose powers are related to k -Pell

andk -Pell Lucas numbers.

[a b c¢]
Suppose that A:Id e fl

g n 0]

corresponding eigenvectors x =[x, X, x3]‘ Y=y, Y, y3]t and z =[z, 1z, 23]‘, respectively.

is any 3x3 matrix with eigenvalues 4, = 4r,, 4, = 4r, and 4, =0 with

2

So, we have a system of linear equations suchas Ax = 4,x, Ay =21,y and AzZ=1,Z.
The matrix A is diagonalizable since the eigenvalues are distinct. So, without loss of the generality, we

can write A =T AT " where A is diagonal matrix with entries 4,,4, and 4,. A matrix T is invertible matrix

with column vectors X,y and z . Thus, taking powers of diagonalizable matrices, we obtain A" =TA"T *;

’
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[4"r" 0o o0l
| ,
A"=T| 0 4'r] 0T t (12)
| o 0 0

By (10) and (11), it follows that;

( 1 0 0] [0 0 0] 1 o0 0] \|
A":ZZ'HIQMTIO 1 OIT’l—Qk’nTIO 0 oIT’1+2 1+kP“TIO -1 0IT’1|.
L 0 0 1] 0 0 1] o 0o o] J

Thus, we have formula of the power matrix A" which related to k -Pell and k -Pell Lucas numbers as

A"=2"7(Q,, (1 -D)+2v1+kP, E), (13)
[0 0 0] 1 o 0]
whereD:TIO 0 oIT’landEleo -1 oIT’l.
0 0 1] o 0 0]

Now, we can derive some special matrix A which occur for the special cases of the eigenvectors X,y and z

and some identities associated with these.

[l [l
Firstly, we choose eigenvectors X = I =2r, I Y = I =2r I . By assumption, we have a system of linear equations
L] L]

which satisfy Ax = 2,X and Ay = 1,y . ltis given by

ar, —2br, + ¢ = 4r/ (14)
ar, - 2br + ¢ = 4r/ (15)
dr, - 2er, + f = -8rr, (16)
dr, — 2er, + f = -8rr, (17)
gr,— 2hr, +i=4r, (18)
gr, - 2hr, +i = 4r, (19)
From these equations, it is equivalent to
a-2b+c=8+4k, a+2b =8, (20)
d-2e+ f =8k, d+2e=0, (21)
g-2h+i=4, g+2h=4. (22)
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Let us consider the different eigenvector z for eigenvectors x and y which are given above. If we choose

F—|T|

| | where | # 0 then the matrix D and E are obtained as

-2
L]

7=

2 -1 -4

D:£| 4 -2 —8|

4 |

L—z 1 4J

and
[2(1+k)  1-k 4]
1
E = |4(1+k) —2(3+k) —8I.
441 + Kk

0 2 4J

In addition, the system of equations which satisfy the systems Az = 1,z given by

—-a-2b+c=0
-d-2e+f=0
-g-2h+i=0.
Solving system of linear equations (20) - (22) and(25)—(27), we obtain
[2(2+k) 2-k 8]
A:: 4k -2k 0:.
| 2 1 4]

Considering the formula given in (13) and substituting the matrices D and E , we get

A"=2"7(Q,, (1 -D)+2v1+kP, E)
2 |f |{ 1|r2 -1 —41|\| |( . |F2(1+k) 1-k 4T|\|\|
=2 Q. 1-—| 4 -2 -8 |+2y1+kP | ———=4(1+k) -2(3+k) -8
I i P e o e
}—2(2(1+k)kan+kan) ~2(-1+ k)P, +Q,, 4(2kan+Qk,n)—}
=27 8(1+k)P., -4Q,, -4(3+k)P  +6Q, ~8(-2P  +Q, ).
|L 2Q,, 4P, -Q,, 8P, , J

UNAINNIAE

(23)

(24)

—_
N
ol

N

—_
N
(2]

N

—_~
N
~

SN—
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By using the identities given in Proposition 2, we can rewrite the entries of matrix. Thus, we get

k,n+1 k,n k,n+1

n

A" =2"""2kQ, , , 2k (3P, ,, - P.,) B8kP

| _
| Qk,n P, 7kP, 4PMJ

k,n-1

M Q.. P _kP 4p T|
|
|

For a positive integer n > 1. Thus, we have been proved the following theorem.

[2(2+k) 2-k 8]
| |

Theorem 1. If A = | 4k -2k 0 E then
|2 1 4]
}— Qk,n+1 Pk,n+1 - I(F)k,n 4Pk,n+1 —I
n 2n-2
A = 2 | 2I(Qk,nfjl 2k (Spk,n—l - Pk,n) 8k|:)k,n—l |’ (30)
| |
I_ Qk,n I:)k‘n - kF)k,nfl 4Pk,n J

for a positive integer n > 1.

Let us consider the different eigenvectors

Mo 1re -1 (e 10T l-r] (=171
Yel'—ZrzHZrZHZrZIL,VGJI—ZQHZQH2r1ILandfeJI—ZIH—ZIHZIH,
(AR N | R N Y R IREEEARE]

where | = 0. We have possibilities of the eigenvectors x,y and z corresponding to distinct eigenvalues A, A,
and 1, that are linearly independent, then we receive the different matrices A and entries of A" related to
k -Pell and k -Pell Lucas numbers where k is a positive real number and a positive integer n > 1. The proof of

Theorem 2 - 5, which is similarly to theorem 1, are omitted.

(T v YO Tr, N
Theorem 2. For eigenvalues and eigenvectors : ﬂl,l -2r, } H /IZ,I -2r I I , we will have:
LU e )
| [6+k = 2(2+k)]
1. If | 24, =21 | |, then the matrix A=I 2k -k 4k I and

U
| | |
L -1]) s & 2 |
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}—2(3Pk n+1+ I(pk,n) Pk,n+1 kPkn 2(?k n+1—}
A" =20 Ak (P P ) 2K (3P P ) 4kQ, ] (31)
| |
L 2(I:>l<,n—1+Pkn) IDkn_kl:)k,n—l 2an J
[ T1 [2(6+k) -2-k -8]
2. /fl/la,IZIH,then thematrixA:I 4k -2k 0 : and
SEN) L
|—4(3Pk,n+l+ I(Pk,n) _Qk‘n+1 _8Pk‘n+1 —I
A"=2""]8k(P  +P. ) -2kQ, , -16kP_ . |. (32)
| |
|_ 4(Pk,n+1+ Pk,n) _Qk,n _8Pk,n _l
|( [ T\| |( [, T\|
Theorem 3. For eigenvalues and eigenvectors| ﬂl,l 2r, I H AZ,I 2r, I | » we will have:
L) U )
[ [=17) [2(2+k) -2+k -8
7./fI/13,I2II:,thenthematrixAzi -4k -2k 0 I and
L) Y
}— Qk n+1 kPk,n Pk n+1 _4Pk n+1—}
A" =277 -2kQ,,, -2k(P_, -3P ) B8kP_ . |. (33)
| |
L _Qk,n Pk,n_kpk,n—l 4Pk,n ]
(71 [2(6+k) 2+k 8]
2. /fl/13,l—2lH,thenthematr/xA:I -4k -2k 0 i and
L=l [ os 1 4
}—4(3Pk‘n+1+ I(Pk‘n) Qk,n+1 8Pk‘n+1 —I
A"=2"""| -8k (P, +P ) -2kQ, ., -16kP_ . |. (34)
| |
l__4(pk,n+:lﬁL Pk,n) _Qk,n _8Pk,n J

(

Theorem 4. For eigenvalues and e/genvector8| Ay , we will have:

K
| | |
L L-1))
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([ T-1T [6+k =5 -2(2+k)]
1. /fI/13,i2IH,thenthematrixA:I 2k -k -4k I and
L) S
|r2(3Pkm+kPk’n) P~ kP, , —2QKMT|
A" =20 ak (P + P ) -2k(P, =3P .,) -4kQ,, .| (35)
|L—2(Pk v T Pn) kP, . .- P, 2Q, , J
(71 [2(2+k) 2-k -8]
2. /fll3,I2IH,thenthematr/xA=| 4k -2k 0 I and
L |1 U | -2 -1 4
|F Q. P v~ kP, —4Pkn+1—l
A"=2"""12kQ,,, -2k(P_,-3P ) -8kP_ .| (36)
|L -Q,, kP, ., — P, 4P, J
([ T-rNN( T-r,T
Theorem 5. For eigenvalues and e/genvectorsl 11,: 2r, I H AZ,I 2r, : I we will have:
L)l el
(=11 [2(6+k) -2-k 8]
7./fI/13,I—2IH,then thematr/xA:: 4k -2k 0 i and
L) O
|F4(3kam+ kP..)  -Qunu  8Pin T|
A" =27 8k(P 4P ,) -2kQ, ., 16kP_ . (37)
|L—4(Pk’n+1+ Pe) Q.. -8P, J

Corollary 6. For any positive integer n , the following equalities are satisfied.

6 1 87 [2Q,,, Q, 8P,
1. I4 -2 oI =2“’3:4Qn,1 2Q,., 16Pn,1l
|2 1 4] | 4Q, Q,, 8P |
7 1 6] [2Q,, Q, 4Q,,]
2. I 2 -1 4I = 2“"‘} 4Q, 2Q,, 8Q,, I
|3 & 2] | Q.. Q.. 4q,]
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r4 -3 -gi [2Q,,, -Q,., -8P., 1
3. I 4 -2 0 I =2“’3I 4Q, -2Q,, —16PHI
|6 -1 -4 |2Q,, -Q, -8P, |
re -1 -8\ [2Q,, -Q, -8P,]
4. I—4 -2 0 I :22”3}—4Qn1 2Q, ., 16Pn1 I
-2 1 4] | -2Q, Q,, .
ri4 3 87 [2Q,., Q.. 8P, 1
5. I—4 -2 0 I =22"’3I -4Q, -2Q,, —16PHI
-6 -1 -4 [-2Q,, -Q, -8P, |
r7 & -6 [2Q,., Q, -4Q,,]
6. I 2 -1 I = 22”’4: 4Q, 2Q,, 3Qn 1:
-3 -1 zJ [-2Q,., -Q.. .
re 1 -8 [2Q,,, Q, 8P, 1
7. I 4 -2 I = 22”*3: 4Q,, 2Q,, -16P i
-2 -1 4| [-2Q, -Q,, 8P, |
14 -3 87 [2Q,,, -Q,. B8P 1
8. I 4 -2 0 I :22"’3I 4Q,  -2Q,, 16PHI
-6 1 -4 [-2Q,, Q,  -8P, ]

Proof. In Theorem 1 - 5, by taking k =1 and using Proposition 2, the entries of power matrices are reduced to

Pell and Pell-Lucas numbers. . O

Discussion

In discussion, we studied k -Pell and k -Pell Lucas numbers and the matrix method. In the results, we show the
method to express the n' powers of three-by-three matrices such that entries related to k -Pell and k -Pell
Lucas numbers. Finally, the eight n" powers matrices by choosing only one eigenvector from x,y and z are

presented.

Conclusion
In this paper, we obtained the matrices which entries of power matrix are k -Pell and k -Pell Lucas numbers.

Moreover, if k =1, some matrices which entries of power matrix are Pell and Pell Lucas numbers are given.
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For the future study, we intend to find some matrices that are invertible and contain entries of power matrices in

other sequences.
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