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Abstract

In this paper, we study the modified (S,t) Jacobsthal and modified (S,t) Jacobsthal — Lucas numbers,
and we define the 2 x 2 matrices A, B, W , which satisfy the relation A’ Z(S—t)A+ stl, B? :(S—t)B+StI ,
and W? =(S+t)2| . Moreover, we prove some identities of modified (S,t) Jacobsthal and modified (S,t)
Jacobsthal — Lucas numbers, some of the relation between modified (S,t) Jacobsthal and modified (S,t)
Jacobsthal — Lucas numbers, and some sum formulas for modified (S,'[) Jacobsthal and modified (S,t)
Jacobsthal — Lucas numbers by using these matrices.
Keywords: modified (S,t) Jacobsthal number; modified (S,t) Jacobsthal — Lucas number; matrix method;

Binet's formulas
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Introduction

The Fibonacci sequence {Fn} and Lucas sequence {Ln} are the two most well-known sequences, and
these sequences are defined respectively by the recurrence relations F,=F _+F_, and L, =L _,+L, _,, for
n>3, with initial conditions =1, F,=1, L, =1,and L, =3. (Horadam, A. F., 1961), (Clarke, J.H. & Shannon,
A.G., 1985).

In 1996, Alwyn F. Horadam studied the Jacohsthal sequence {Un} and Jacobsthal — Lucas sequence
{Vn} . For n>0, these sequences are defined respectively by the recurrence relations U,,, =U ., +2U, and

V.., =V,,; +2V, , with initial conditions U, =0, U, =1,V, =2,and V, =1.

n+1

In 2008, Fikri Koken and Durmus Bozkurt studied the H -matrixand M -matrix. These matrices are defined
12 3 2
respectively by H = 10 and M = 1 2] Also, they obtained some identities of the Jacohsthal numbers U

and Jacobsthal — Lucas numbers V, using these matrices and elementary matrix algebra.
In 2014, Julius Fergy T. Rabago studied the modified (S,t) Jacobsthal sequence {th} and modified

(S,t) Jacobsthal — Lucas sequence { jj"} .For n>1, these sequences are defined respectively by the recurrence

relations

It =(s—t) I3+t (1)
s =(s-1) J;" +stips, 2
with initial conditions J3*=0, J;* =1, j*=2, and j;* =s—t. The first few terms of the modified (S,t)
Jacobsthal numbers Jj‘t and modified (S,t) Jacobsthal — Lucas numbers jj" , Which are respectively created

via the recurrence relations in (1) and (2) as follows :

Table 1 The first few terms of JS’t and jst forn=20,1 2, 3.

n: 0 1 2 3
NI 0 1 s—t s? —st +t?
it 2 s—t s% +t? N

In the particular case of (1) and (2) are: if s = 1’245 ,t=-1 *f and s = ﬁ b= 7¥ then the classical

Fibonacci and Lucas sequences are obtained, andif s=-1, t=-2 and s=2, t =1 then the classical Jacobsthal
and Jacobsthal — Lucas sequences are obtained. Also, he obtained some identities of the modified (S,t)

Jacobsthal numbers and modified (S,t) Jacobsthal — Lucas numbers using matrix algebra.
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In 2015, Julius Fergy T. Rabago studied Binet's formulas of the recurrence relations (1) and (2) as follows:

For a natural number n, their well-known formulas are defined respectively by

" (=)
Jot = and ' =s" +(-t)", (3)
" s+t b (1)
where X, , = S and — U are roots of the characteristic equation x? —(s—t)x—st=0, s, t are any real numbers

and $#—t. Note that X, +X, =s—t, X, —X, =s+t, and XX, =—st. For convenience throughout this paper, we

will use the symbols J, , jn instead of Jrf’t and Jﬁt , respectively.

Methods

In this section, firstly, we give definitions of the X -matrix and Y -matrix, which satisfy the relations
X? :(s—t)X +stl and Y? =(S +t)2 | , respectively.
Definition 1 Let a, b, p, g, s,and t bereal numbers suchthat b, g#0 and S# —t.Thenthe X -matrix and

Y -matrix can be written as

a b
X=| _st-sa+ta+a’ : (4)
- > %% s-t-a
b
p q
and Y = (s+'[)2—p2 ol (5)

q

Next, we find the n" power of the X -matrix in which the component matrix consists of Jn , as shown in
the following lemma and theorem.
Lemma 2 For n>1. Then the n" power of the X -matrix is given by
X"=J X+std, ,l. (6)
Proof. We will prove this by mathematical induction that X" =J X +stJ, ;| for n>1.
It is not hard to see that X =J; X +5tJ,1 . Thus (6) holds for n=1.
Assume that the result is true for the positive integer, N =K then
X*=J X+std, I
Next, we need to show that (6) also holds for N =k +1 by considering (1) and Definition 1 as follows:
Xk xky
=(J X+t 1) X
=J X% +stJ, , X
=J, ((s—t) X +stl)+st],_, X

1
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s—t)J X +5std, | +stJ, ;X
s—t)J X +5tJ, X +5tJ, |
(s—t)J, +5td, ;) X +stJ, ]

Jo X+t ]

(
(
(

Therefore N =Kk +1 is true, and this completes the proof.
Theorem 3 For n>1 and b#0, we have
aJ, +std, bJ
X"=|" _st-sa+ta+a’ : (7)

e (st s,

n

Proof. It is immediately proven by (6).

Now, we define the 2x2 matrices A , B , and W . These matrices satisfy the relations
A? :(s—t)A+stI , B? :(s—t)B+St| , and W? =(S+t)2 | in which the component of each matrix consists of
Ji, 3,5, Jo,and J; asfollows :
Definition 4 Let S and t are areal number such that S # —t . Then the A -matrix, B -matrix, and W -matrix are

defined respectively by

s—t st
A= , (8)
1 0
s_—t (S+'[)2
B: 2 2 , (9)
Looset
2 2
q W s—t 2st (10)
an =l 9 —(s—t)'

For some particular values of & and b in (4), it is obvious the following results hold.
elf a=J, =S—t and b=stJ; =st  then (8) is obtained.

2 2
i _ S+t S+t
b st and b=( ) J, =( ) , then (9) is obtained.
2 2 2 2

Also, for some particular values of @ and b in (5), it is obvious the following results hold.

olf a=

olf P=j, =S—t and q=Stj, =25t then (10) is obtained.
After that, we find the n" power of the A -matrix and B -matrix, which corresponds to the following

theorem.
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Lemma 5 For n>1. Then the n" power of the A -matrix and B -matrix are given respectively by
() A'=JA+st I,

(i) B"=JB+std ,I.

Proof. The proofs of (i) and (ii) are similar to (6) by using (1) and Definition 4.

Theorem 6 For n>1, we have

(|) An= ‘]n+1 StJn
J, std., )

n

2
s+t
L Gy
(i) B"=|?2 2
EJH 1
2 2

Proof. Taking a=$—t and b =S5t in (7), then we have

A (s—t)J, +stJ,, std, |
J std,

n

By (1), we have

An — ‘]n+1 St‘Jn .
J, std
The proof of (i) is similar to (i).

Furthermore, we find the n" power of the A -matrix, which multiplies the W -matrix, as shown in the

following theorem.

Theorem 7 For n>1, we get

AW =WA" = j A+stj, I =(JT“ sU, j (11)
Jo Sty

Proof. The proof of (11) is similar to (6) by using (2) and Definition 4.

Results
In this section, we first find some identities of J,, and jn . We also find some identities of the relations
between J,, and jn , as shown in the following lemma.
Lemma 8 For n,r >1. Then
() (s—t)J,+2st],, =],
(i) 23.,-(s-t)J, =1],,
(iiy  J .y +Std =1,
(v) ($*+17)3, +st(s=t)J, s = Jp., .
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(V) G+t =(s+1)7 3,
(Vi) (S _t) jn+r+1 + 25tjn+r = (S +t) jn+r+1 ’
(vii) 2jn+r+1_(s_t) jn+r Z(S+t)2 ‘]n+r'

Proof. By the Binet's formulas in (3), we have

(s—t)J, +25t3,., =(s—t){sn —(t) J+25t[snl_(_t)n_l}=s“ H(t) =]y,

S+t S+t

The proofs of (ii), (iii), (iv), (v), (vi), and (vii) are similar to (i).

After that, we find some identities of J,, and jn . We also find some identities of the relations between J,,
and ], byusing A", B", AW, and WA" , as follows:
Lemma 9 For n,r>1 and n—r>0. Then
() det(A")=(-1)"(st)",
(i) 3,333 =(-1)"(st)"",
(iiy I, =std, I, +3,3

nYr+l:

r

(V) (=2)"(st) " 3,,=3,3, 3,9,

Proof. By det(A) =—st , we have
det(A") = (detA)" =(-1)"(st)". (12)

It follows by Theorem 6 (i) that

—stJ?Z. (13)

det(A")=stJ, ,J,,,
By using (12) and (13), we obtain
3yada =32 = (1) (st)"™.
Since A™" = A"A" then
(JWI std, . j_[stJnJr +J,.,d., sztanJr1+stJn+1Jrj
J st std, ,J, +J.J,,, st%J J, ,+stdJ )

n+r n+r-1 nYr+l

Note that

ar_ 1 [stJrl —stJ,j.
(st L=, I,
Since A" = A" (A’r ) = A" (Ar)_l we obtain
(Jnm stJn,J_ 1 (JMJ”—J”J, JnJHl—JMJ,J
J, st (=1 (st) 9,9, = 3,03, 9,0,,-3,9, )

Therefore, the identities (i), (ii), (iii), and (iv) are immediately seen.

n-r-1 r+l
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Lemma 10 For n>0. Then the following results hold.
() det(B")=(-1)"(st)",
(s+t)* 32
2 )
Proof. The proofs of (i) and (ii) are similar to Lemma 9 (i).

(i) det(B”)=j7”2—

Lemma 11 For n,r >1 and n—r >0. Then the following results hold.

() det(WA")=(-1)""(s+t)"(st)",

(i) Gados— 32 = (1) (s+)" (st)",

(W) Jner = SUpadr + 00y,

V) (=1) (st) " Joy = Jodos — Joads -

Proof. The proofs of (i), (ii), (i), and (iv) are similar to Lemma 9 (i), (ii), (iii), and (iv).

Theorem 12 For n,r >0 and n—r >0, we have

Joe —(=st) o =10nd, - (14)
Proof. It is known that
W2A™ —(=st) W?A"" =WWA"A" —(—st) WWA"A™"
=WA'WA" —(—st)" WAWA "
= (WA" ) (WA") - (—st)" (WA )(WA )
= WA (WA" —(~st) WA ™"
—WA" (WAr ~(~st)'w (A“)’l)_
Since matrix multiplication and matrix subtraction, we get
W2A™ —(—st) W>A™
=W (WA™") - (=st)" W (WA"™)
el el ) 3
i {(s ~) fsras + 28ty SE((S=t) ., + Zstjwl)J sy [(s ~) oo + 28t st((s=t)j,_, + Zstjnrl)}
2Jpsra (5 Jner  5t(2hnr =(5-1) Jrurs) 2Jpa (5 J0r  St(2J0 ~(s-1)J1ra)
(15)

By Lemma 8 (vi) and (vii), we can write
(S=) Jurss + 28ty SE((S=t) jy., + 2t ) (=) o+ 25t st((s=t) j,, +2stj,_,,)
—(—st
2jn+r+1_(s_t) jn+r St(zjm-r _(S_t) jn+r—1) 2jn—r+1_(s_t) jn—r St(zjn—r _(S_t)jn—r—l)
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_ (5+t) jpurss  St(S+L) jour j_(_st)r{(sﬂ)jnr+1 st(s+t) j,_, J

(s+t)°J,,, st(s+t)’J (s+t)"3,, st(s+t)’J,.,.

n+r-1

(S+t)(jn+r+l_(_5t)r jn—r+1) St(s+t)(jn+r _(_St)r jn—r) ( )
= . 16
(s+t)’ (JW —(~st)' J) st(s+t)’ (J —(~st)' J)
By using (16) in (15), we get that
r (S+t)(jn”+l—(—5t)r jn—r+1) St(S+t)(jn+r _(_St)r jn—r)
W2A™ —(=st) W2A™" = . (17)
(s+)" (3 =(=5) 3o ) st(s+0)* (3= (-5) 3,0

Since (—st)r =0 and the matrix multiplication, we obtain that

WA? (WA — (~st)' W (Ar)’l)

_(Lm stjnJ (j,ﬂ stj, j_ st(-23, +(s-t)J,,) st(ZJHl—(s—t)Jr) 8)
b st (U de sty (s—t)J, +2std,,  —(s—t)J,,,—2std,

By Lemma 8 (i) and (ii), we have

(st(-zar (513, st(zarﬁ—(s—t)m)]:[—sﬂm t ] (19

(s—t)J, +2st3,,  —(s—t)J,,,—2stJ, |

r+1

By using (19) in (18) and matrix subtraction, we get

n r r r Jn+ Stjn Jr+ Stjr Stjr— Stjr
it (st w(a)")<| B St 1 [ e 1 1o JJ

[ Jn+1 Stjn ][ Jr+1 + StJr 1 0 ] (20)
n Stjn -1 Jr+1 + Stjr -1

By Lemma 8 (v) in (20) and matrix multiplication, we get

WA”(WAr—(—St)rW(Ar) {Jm stj, j{sﬁ 0 J

n Stjn 1 S+t) ‘]r

(s+t) jpd,  st(s+t)" )9, o1
(s+t)"j,3, st(s+t)"j, 3, '
On the other hand, using (17) and (21), we obtain
r .
‘]n+r _(_St) ‘]n—r = Jn‘]r :
Finally, we find some sum formulas of J, and j, by using A", B", AW , and WA" as follows:
Theorem 13 For n,r >0, we have
L 1_‘]nr+n+ ‘]n - 1_‘Jn+ ‘]nr+n
Jm=( 1_) (n i) - (22)
i 1-j, +(-1)"(st)

499



M9ENTIMENANARTYIW T7 27 (21707 1) 1ngIAN — WEIEU W.A. 2565

BURAPHA SCIENCE JOURNAL Volume 27 (No.1) January — April 2022 UNAINNIAE
. n r+1 n : n i n . ni
Proof.lhsknownthatl—(A) =(I—A) (A) :(I—A)ZA .
i=0 i=0

By Lemma 8 (iii) and Lemma 9 (i), we get

det(1-A")=1-st], , —std? =3, +std, 3., =1— j, +(-1)"(st)".

n+l

Since det(l —A");tO we obtain

r r

r Dy S
(1-a) (-(w) )= =)

i=0

(23)

'Jni StZ‘]ni—l

J we have

0
r r
i=0

- 1-std stJ
Since (I—A”)lz ! [ n-1 n

1-j, +(=1)"(st)" L J 1-Joa
(1-A") (1-Am)
S 1 n n(1—stJn1 std, j(l—Jmml —std_ .. ]
1-j, +(-1) (st) J, 1-J,., )0 =3,., 1-st. ...,
1 (1-s3,,)(1-9,.00)-st3, 9, —(1-std,)st, +(1-std,,,, ,)st),
_1—jn+(—1)n(st)n[(l—JnHM)Jn—(1—Jn+1)Jmn (-3, )(1-5t, .0 )-s13,9,,., J
On the other hand, using (23) and (24), we get

L J :(1_‘]nr+n+1)‘]n _(l_"]n+1)‘]nr+n

ni

= 1-j, +(-1)"(st)"
Corollary 14 For n,r >0, the following results hold.
1. . 1 2

ro _(1_2Jnj<2_1nr+n)_2(s+t) ‘]n‘]nr+n

= 1-j, +(-1)"(st)"

r %(Z_jnmn)‘]n _(1_;jnJ‘]nr+n
i) D= _ — .

= 1-j, +(=1) (st)

Proof. The proofs of (i) and (ii) are similar to Theorem 13.

n

Theorem 15 Let n,r>=0. It r is an even, then

(1+ ‘]n+1)‘]nr+n _(l+ ‘]nr+n+1)‘]n
1+ j, +(-1)" (st)"

J. =

ni

(25)

:
=
Proof. Let I' be an even number. Then we have

L+(A) " =(1 +A”)Zr0:(—1)i (an) =(1 +A”)Zro:(—1)‘ A"

By Lemma 8 (iii) and Lemma 9 (i), we get
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det(1+A")=1+std , +J,,, +std, I, —std? =1+ j, +(=1)" (st)".
Since det(l + A”);t 0 we can write
r i‘]niﬂ Sti‘]ni
(1 +A”)‘1(| +(A")”1):ZA“‘ = o (26)
= ‘]ni StZ‘]ni—l
i=0 i=0
Since (I +A )71 = ! —— (1+St‘]”1 —st, j we have
I+, +(-1) (st)y U —dp 1+d,
(1+A) (1+A)
_ 1 (1+ stl,, —stJ, j(u Jow S ]
1+ jn +(_1)“ (St)n _‘]n 1+‘]n+1 ‘]nr+n 1+ St‘]nr+n—1
1 (153, )(1+9,.)-583,3,., st(l+std, )3, —st(l+std, . )3,
= 27
1 +(=0)" ()| (14 3000) e ~(14 Jina) 30 (14 300 ) (1S s ) - 50,3, @

On the other hand, using (26) and (27), we obtain

(1+ ‘]n+1)‘]nr+n _(1+ ‘]nr+n+1)‘]n
1+ j, +(-1)" (st)"

J,:

ni

r
i=0

Corollary 16 Let n,r>0. It r is an even, then
1 . . 1 2
r 2+ n 2+ nren )T 4 S+t ‘]n‘]nr+n
() ij=2( 2+ o) nz( n)
-0 1+ j, +(-1) (st)
1 . 1 .
5(2-{_ Jn )‘]nr+n _§(2+ Jnr+n)‘]n
1+ j, +(=1)" (st)"

Proof. The proofs of (i) and (ii) are similar to Theorem 15.

J =

ni

r
0

(ii)

Theorem 17 For m, k>0 and n>1, the following results hold.

(st 0 s
() :Z[T](st)‘(Jnl)‘( Jn)m-i [

i=0

(l) Jmn+k =

3 \;Mg

Proof. Since Lemma 5 (i), we can write

(A) A =(3,

_ Z[TJ(JnA)mi (st3,,) A

m
i=0

A+std, 1) A"
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By the power property of a matrix, we have
(An )m Ak — Amn+k ] (29)
By using (28) and (29), we obtain

e = 2[?}(&)‘ (30s) (3)" I

The proof of (i) is similar to (i). Therefore, the proof is complete.

Discussion

In this paper, we show that X -matrix and Y -matrix satisfying to X° =(S—t)X +stl and Y? =(S +t)2 l.
Moreover, we establish particular cases of these matrices: A -matrix, B -matrix, and W -matrix that are useful to
obtain many new identities of the modified (S,t) Jacobsthal and modified (S,t) Jacobsthal — Lucas numbers by

using some properties of matrix operations.

Conclusions

In this paper, we consider the modified (S,t) Jacobsthal and modified (S,t) Jacobsthal — Lucas
numbers, and we develop generating the 2x2 matrices A -matrix, B -matrix, and W -matrix. After that, we get
some identities of the modified (S,t) Jacobsthal and modified (S,t) Jacobsthal — Lucas numbers, some identities
of the relation between modified (S,t) Jacobsthal and modified (S,t) Jacobsthal — Lucas numbers, and some sum
formulas for the modified (S,t) Jacobsthal and modified (S,t) Jacobsthal — Lucas numbers by using these
matrices representation and some properties of matrix operations. Furthermore, we conjecture which this concept

extends negative subscript and develops to the n x n matrix consisting of elements of other recurrence relations.
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