เอกลักษณ์เบื้องต้นของจำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล-ลูคัสโดยเมทริกซ์

Some Identities of the Modified (s,t) Jacobsthal and Modified (s,t) Jacobsthal – Lucas Numbers by the Matrix Method

มงคล ทาทอง^{*}

Mongkol Tatong

ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี Department of Mathematics and Computer Science, Faculty of Science and Technology,

Rajamangala University of Technology Thanyaburi

Received: 22 February 2021
Revised: 18 May 2021
Accepted: 16 June 2021

บทคัดย่อ

ในงานวิจัยนี้เราได้ศึกษาจำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล-ลูคัส และ นิยามเมทริกซ์มิติ 2×2 A B และ W ซึ่งสอดคล้องกับความสัมพันธ์ $A^2 = (s-t)A + stI$ $B^2 = (s-t)B + stI$ และ $W^2 = (s+t)^2 I$ พร้อมทั้งพิสูจน์เอกลักษณ์เบื้องต้นของจำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล ลูคัส และสูตรผลรวมเบื้องต้นสำหรับจำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล-ลูคัส และสูตรผลรวมเบื้องต้นสำหรับจำนวนโมดิฟายด์ (s,t) จาคอปทอล และ จำนวนโมดิฟายด์ (s,t) จาคอปทอล-ลูคัส โดยใช้เมทริกซ์

คำสำคัญ: จำนวนโมดิฟายด์ (s,t) จาคอปทอล; จำนวนโมดิฟายด์ (s,t) จาคอปทอล-ลูคัส; วิธีเมทริกซ์; สูตรไบเนต

Abstract

In this paper, we study the modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers, and we define the 2 x 2 matrices A, B, W, which satisfy the relation $A^2 = (s-t)A + stI$, $B^2 = (s-t)B + stI$, and $W^2 = (s+t)^2I$. Moreover, we prove some identities of modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers, some of the relation between modified (s,t) Jacobsthal and modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers, and some sum formulas for modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers by using these matrices.

Keywords: modified (s,t) Jacobsthal number; modified (s,t) Jacobsthal – Lucas number; matrix method; Binet's formulas

^{*}Corresponding author. E-mail: mongkol_t@rmutt.ac.th

Introduction

The Fibonacci sequence $\{F_n\}$ and Lucas sequence $\{L_n\}$ are the two most well-known sequences, and these sequences are defined respectively by the recurrence relations $F_n = F_{n-1} + F_{n-2}$ and $L_n = L_{n-1} + L_{n-2}$, for $n \ge 3$, with initial conditions $F_1 = 1$, $F_2 = 1$, $L_1 = 1$, and $L_2 = 3$. (Horadam, A. F., 1961), (Clarke, J.H. & Shannon, A.G., 1985).

In 1996, Alwyn F. Horadam studied the Jacohsthal sequence $\{U_n\}$ and Jacobsthal – Lucas sequence $\{V_n\}$. For $n \geq 0$, these sequences are defined respectively by the recurrence relations $U_{n+2} = U_{n+1} + 2U_n$ and $V_{n+2} = V_{n+1} + 2V_n$, with initial conditions $U_0 = 0$, $U_1 = 1$, $V_0 = 2$, and $V_1 = 1$.

In 2008, Fikri Koken and Durmus Bozkurt studied the ${\it H}$ -matrix and ${\it M}$ -matrix. These matrices are defined respectively by ${\it H}=\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ and ${\it M}=\begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$. Also, they obtained some identities of the Jacohsthal numbers ${\it U}_n$ and Jacobsthal – Lucas numbers ${\it V}_n$ using these matrices and elementary matrix algebra.

In 2014, Julius Fergy T. Rabago studied the modified (s,t) Jacobsthal sequence $\{J_n^{s,t}\}$ and modified (s,t) Jacobsthal – Lucas sequence $\{j_n^{s,t}\}$. For $n \ge 1$, these sequences are defined respectively by the recurrence relations

$$J_{n+1}^{s,t} = (s-t)J_n^{s,t} + stJ_{n-1}^{s,t},$$
(1)

$$j_{n+1}^{s,t} = (s-t)j_n^{s,t} + stj_{n-1}^{s,t},$$
(2)

with initial conditions $J_0^{s,t}=0$, $J_1^{s,t}=1$, $j_0^{s,t}=2$, and $j_1^{s,t}=s-t$. The first few terms of the modified $\left(s,t\right)$ Jacobsthal numbers $J_n^{s,t}$ and modified $\left(s,t\right)$ Jacobsthal – Lucas numbers $j_n^{s,t}$, which are respectively created via the recurrence relations in (1) and (2) as follows:

Table 1 The first few terms of $J_n^{s,t}$ and $j_n^{s,t}$, for n=0,1,2,3.

<i>n</i> :	0	1	2	3
$J_n^{s,t}$:	0	1	s-t	$s^2 - st + t^2$
$j_n^{s,t}$:	2	s-t	$s^2 + t^2$	s^3-t^3

In the particular case of (1) and (2) are: if $s=\frac{1-\sqrt{5}}{2}$, $t=-\frac{1+\sqrt{5}}{2}$ and $s=\frac{1+\sqrt{5}}{2}$, $t=-\frac{1-\sqrt{5}}{2}$ then the classical Fibonacci and Lucas sequences are obtained, and if s=-1, t=-2 and s=2, t=1 then the classical Jacobsthal and Jacobsthal – Lucas sequences are obtained. Also, he obtained some identities of the modified (s,t) Jacobsthal numbers and modified (s,t) Jacobsthal – Lucas numbers using matrix algebra.

In 2015, Julius Fergy T. Rabago studied Binet's formulas of the recurrence relations (1) and (2) as follows: For a natural number n, their well-known formulas are defined respectively by

$$J_n^{s,t} = \frac{s^n - (-t)^n}{s+t} \text{ and } j_n^{s,t} = s^n + (-t)^n,$$
(3)

where $x_{1,2}=s$ and -t are roots of the characteristic equation $x^2-(s-t)x-st=0$, s, t are any real numbers and $s\neq -t$. Note that $x_1+x_2=s-t$, $x_1-x_2=s+t$, and $x_1x_2=-st$. For convenience throughout this paper, we will use the symbols J_n , j_n instead of $J_n^{s,t}$ and $j_n^{s,t}$, respectively.

Methods

In this section, firstly, we give definitions of the X-matrix and Y-matrix, which satisfy the relations $X^2 = (s-t)X + stI$ and $Y^2 = (s+t)^2I$, respectively.

Definition 1 Let a, b, p, q, s, and t be real numbers such that b, $q \neq 0$ and $s \neq -t$. Then the X -matrix and Y -matrix can be written as

$$X = \begin{pmatrix} a & b \\ -\frac{-st - sa + ta + a^2}{b} & s - t - a \end{pmatrix},\tag{4}$$

and

$$Y = \begin{pmatrix} p & q \\ \frac{(s+t)^2 - p^2}{q} & -p \end{pmatrix}. \tag{5}$$

Next, we find the ${\bf n}^{\rm th}$ power of the X -matrix in which the component matrix consists of J_n , as shown in the following lemma and theorem.

Lemma 2 For $n \ge 1$. Then the nth power of the X-matrix is given by

$$X^{n} = J_{n}X + stJ_{n-1}I. ag{6}$$

Proof. We will prove this by mathematical induction that $X^n = J_n X + st J_{n-1} I$ for $n \ge 1$.

It is not hard to see that $X = J_1 X + st J_0 I$. Thus (6) holds for n = 1.

Assume that the result is true for the positive integer, n = k then

$$X^{k} = J_{k}X + stJ_{k-1}I.$$

Next, we need to show that (6) also holds for n = k + 1 by considering (1) and Definition 1 as follows:

$$X^{k+1} = X^{k}X$$

$$= (J_{k}X + stJ_{k-1}I)X$$

$$= J_{k}X^{2} + stJ_{k-1}X$$

$$= J_{k}((s-t)X + stI) + stJ_{k-1}X$$

$$= (s-t)J_k X + stJ_k I + stJ_{k-1} X$$

$$= (s-t)J_k X + stJ_{k-1} X + stJ_k I$$

$$= ((s-t)J_k + stJ_{k-1})X + stJ_k I$$

$$= J_{k+1} X + stJ_k I.$$

Therefore n = k + 1 is true, and this completes the proof.

Theorem 3 For $n \ge 1$ and $b \ne 0$, we have

$$X^{n} = \begin{pmatrix} aJ_{n} + stJ_{n-1} & bJ_{n} \\ -\frac{-st - sa + ta + a^{2}}{b}J_{n} & (s - t - a)J_{n} + stJ_{n-1} \end{pmatrix}.$$
 (7)

Proof. It is immediately proven by (6).

Now, we define the 2x2 matrices A , B , and W . These matrices satisfy the relations $A^2=(s-t)A+stI$, $B^2=(s-t)B+stI$, and $W^2=(s+t)^2I$ in which the component of each matrix consists of J_1 , J_2 , j_0 , and j_1 as follows :

Definition 4 Let s and t are a real number such that $s \neq -t$. Then the A-matrix, B-matrix, and W-matrix are defined respectively by

$$A = \begin{pmatrix} s - t & st \\ 1 & 0 \end{pmatrix},\tag{8}$$

$$B = \begin{pmatrix} \frac{s-t}{2} & \frac{(s+t)^2}{2} \\ \frac{1}{2} & \frac{s-t}{2} \end{pmatrix},\tag{9}$$

and

$$W = \begin{pmatrix} s - t & 2st \\ 2 & -(s - t) \end{pmatrix}. \tag{10}$$

For some particular values of a and b in (4), it is obvious the following results hold.

- If $a = J_2 = s t$ and $b = stJ_1 = st$, then (8) is obtained.
- If $a = \frac{j_1}{2} = \frac{s-t}{2}$ and $b = \frac{(s+t)^2}{2}J_1 = \frac{(s+t)^2}{2}$, then (9) is obtained.

Also, for some particular values of a and b in (5), it is obvious the following results hold.

• If $p = j_1 = s - t$ and $q = stj_0 = 2st$, then (10) is obtained.

After that, we find the ${\bf n}^{\rm th}$ power of the ${\bf A}$ -matrix and ${\bf B}$ -matrix, which corresponds to the following theorem.

Lemma 5 For $n \ge 1$. Then the nth power of the A -matrix and B -matrix are given respectively by

(i)
$$A^n = J_n A + st J_{n-1} I,$$

(ii)
$$B^n = J_n B + st J_{n-1} I.$$

Proof. The proofs of (i) and (ii) are similar to (6) by using (1) and Definition 4.

Theorem 6 For $n \ge 1$, we have

(i)
$$A^{n} = \begin{pmatrix} J_{n+1} & stJ_{n} \\ J_{n} & stJ_{n-1} \end{pmatrix},$$

$$(\mathrm{ii}) \qquad B^n = \left(\begin{array}{cc} \frac{1}{2} \, j_n & \frac{\left(s+t\right)^2}{2} \, J_n \\ \\ \frac{1}{2} \, J_n & \frac{1}{2} \, j_n \end{array} \right).$$

Proof. Taking a = s - t and b = st in (7), then we have

$$A^{n} = \begin{pmatrix} (s-t)J_{n} + stJ_{n-1} & stJ_{n} \\ J_{n} & stJ_{n-1} \end{pmatrix}.$$

By (1), we have

$$A^{n} = \begin{pmatrix} J_{n+1} & stJ_{n} \\ J_{n} & stJ_{n-1} \end{pmatrix}.$$

The proof of (ii) is similar to (i).

Furthermore, we find the ${\bf n}^{\rm th}$ power of the ${\bf A}$ -matrix, which multiplies the ${\bf W}$ -matrix, as shown in the following theorem.

Theorem 7 For $n \ge 1$, we get

$$A^{n}W = WA^{n} = j_{n}A + stj_{n-1}I = \begin{pmatrix} j_{n+1} & stj_{n} \\ j_{n} & stj_{n-1} \end{pmatrix}.$$
 (11)

Proof. The proof of (11) is similar to (6) by using (2) and Definition 4.

Results

In this section, we first find some identities of J_n and j_n . We also find some identities of the relations between J_n and j_n , as shown in the following lemma.

Lemma 8 For $n, r \ge 1$. Then

(i)
$$(s-t)J_n + 2stJ_{n-1} = j_n$$
,

(ii)
$$2J_{n+1} - (s-t)J_n = j_n$$
,

(iii)
$$J_{n+1} + stJ_{n-1} = j_n$$
,

(iv)
$$(s^2 + t^2)J_n + st(s-t)J_{n-1} = j_{n+1}$$
,

(v)
$$j_{n+1} + stj_{n-1} = (s+t)^2 J_n$$
,

(vi)
$$(s-t)j_{n+r+1} + 2stj_{n+r} = (s+t)j_{n+r+1}$$
,

(vii)
$$2j_{n+r+1} - (s-t)j_{n+r} = (s+t)^2 J_{n+r}$$
.

Proof. By the Binet's formulas in (3), we have

$$(s-t)J_n + 2stJ_{n-1} = (s-t)\left(\frac{s^n - (-t)^n}{s+t}\right) + 2st\left(\frac{s^{n-1} - (-t)^{n-1}}{s+t}\right) = s^n + (-t)^n = j_n.$$

The proofs of (ii), (iii), (iv), (v), (vi), and (vii) are similar to (i).

After that, we find some identities of J_n and j_n . We also find some identities of the relations between J_n and j_n by using A^n , B^n , A^nW , and WA^n , as follows:

Lemma 9 For $n, r \ge 1$ and $n-r \ge 0$. Then

(i)
$$det(A^n) = (-1)^n (st)^n$$
,

(ii)
$$J_{n-1}J_{n+1} - J_n^2 = (-1)^n (st)^{n-1}$$

$$(iii) \quad \boldsymbol{J}_{n+r} = \boldsymbol{st} \boldsymbol{J}_{n-1} \boldsymbol{J}_r + \boldsymbol{J}_n \boldsymbol{J}_{r+1} \,,$$

(iv)
$$(-1)^r (st)^{r-1} J_{n-r} = J_n J_{r-1} - J_{n-1} J_r$$
.

Proof. By $\det(A) = -st$, we have

$$det(A^n) = (detA)^n = (-1)^n (st)^n.$$
(12)

It follows by Theorem 6 (i) that

$$det(A^n) = stJ_{n-1}J_{n+1} - stJ_n^2. \tag{13}$$

By using (12) and (13), we obtain

$$J_{n-1}J_{n+1} - J_n^2 = (-1)^n (st)^{n-1}$$
.

Since $A^{n+r} = A^n A^r$ then

$$\begin{pmatrix} J_{n+r+1} & stJ_{n+r} \\ J_{n+r} & stJ_{n+r-1} \end{pmatrix} = \begin{pmatrix} stJ_{n}J_{r} + J_{n+1}J_{r+1} & s^{2}t^{2}J_{n}J_{r-1} + stJ_{n+1}J_{r} \\ stJ_{n-1}J_{r} + J_{n}J_{r+1} & s^{2}t^{2}J_{n-1}J_{r-1} + stJ_{n}J_{r} \end{pmatrix}.$$

Note that

$$A^{-r} = \frac{1}{\left(-st\right)^r} \begin{pmatrix} stJ_{r-1} & -stJ_r \\ -J_r & J_{r+1} \end{pmatrix}.$$

Since $A^{n-r} = A^n (A^{-r}) = A^n (A^r)^{-1}$ we obtain

$$\begin{pmatrix} J_{n-r+1} & stJ_{n-r} \\ J_{n-r} & stJ_{n-r-1} \end{pmatrix} = \frac{1}{\left(-1\right)^r \left(st\right)^{r-1}} \begin{pmatrix} J_{n+1}J_{r-1} - J_nJ_r & J_nJ_{r+1} - J_{n+1}J_r \\ J_nJ_{r-1} - J_{n-1}J_r & J_{n-1}J_{r+1} - J_nJ_r \end{pmatrix}.$$

Therefore, the identities (i), (ii), (iii), and (iv) are immediately seen.

Lemma 10 For $n \ge 0$. Then the following results hold.

(i)
$$det(B^n) = (-1)^n (st)^n$$

(ii)
$$det(B^n) = \frac{j_n^2}{4} - \frac{(s+t)^2 J_n^2}{4}.$$

Proof. The proofs of (i) and (ii) are similar to Lemma 9 (i).

Lemma 11 For $n, r \ge 1$ and $n-r \ge 0$. Then the following results hold.

(i)
$$\det(WA^n) = (-1)^{n+1} (s+t)^2 (st)^n,$$

(ii)
$$j_{n+1}j_{n-1} - j_n^2 = (-1)^{n+1}(s+t)^2(st)^{n-1}$$

(iii)
$$j_{n+r} = stj_{n-1}J_r + j_nJ_{r+1}$$
,

$$(\mathrm{iv}) \quad \left(-1\right)^r \left(st\right)^{r-1} \, j_{n-r} = j_n J_{r-1} - j_{n-1} J_r \, .$$

Proof. The proofs of (i), (ii), (iii), and (iv) are similar to Lemma 9 (i), (ii), (iii), and (iv).

Theorem 12 For $n, r \ge 0$ and $n-r \ge 0$, we have

$$J_{n+r} - (-st)^r J_{n-r} = j_n J_r . {14}$$

Proof. It is known that

$$W^{2}A^{n+r} - (-st)^{r} W^{2}A^{n-r} = WWA^{n}A^{r} - (-st)^{r} WWA^{n}A^{-r}$$

$$= WA^{n}WA^{r} - (-st)^{r} WA^{n}WA^{-r}$$

$$= (WA^{n})(WA^{r}) - (-st)^{r} (WA^{n})(WA^{-r})$$

$$= WA^{n} (WA^{r} - (-st)^{r} WA^{-r})$$

$$= WA^{n} (WA^{r} - (-st)^{r} W(A^{r})^{-1}).$$

Since matrix multiplication and matrix subtraction, we get

$$W^{2}A^{n+r} - (-st)^{r}W^{2}A^{n-r}$$

$$= W(WA^{n+r}) - (-st)^{r}W(WA^{n-r})$$

$$= \begin{pmatrix} s-t & 2st \\ 2 & -(s-t) \end{pmatrix} \begin{pmatrix} j_{n+r+1} & stj_{n+r} \\ j_{n+r} & stj_{n+r-1} \end{pmatrix} - (-st)^{r} \begin{pmatrix} s-t & 2st \\ 2 & -(s-t) \end{pmatrix} \begin{pmatrix} j_{n-r+1} & stj_{n-r} \\ j_{n-r} & stj_{n-r-1} \end{pmatrix}$$

$$= \begin{pmatrix} (s-t)j_{n+r+1} + 2stj_{n+r} & st((s-t)j_{n+r} + 2stj_{n+r-1}) \\ 2j_{n+r+1} - (s-t)j_{n+r} & st(2j_{n+r} - (s-t)j_{n+r-1}) \end{pmatrix} - (-st)^{r} \begin{pmatrix} (s-t)j_{n-r+1} + 2stj_{n-r} & st((s-t)j_{n-r} + 2stj_{n-r-1}) \\ 2j_{n-r+1} - (s-t)j_{n-r} & st(2j_{n-r} - (s-t)j_{n-r-1}) \end{pmatrix}.$$

$$(15)$$

By Lemma 8 (vi) and (vii), we can write

$$\begin{pmatrix} \left(s-t\right)j_{n+r+1} + 2stj_{n+r} & st\left(\left(s-t\right)j_{n+r} + 2stj_{n+r-1}\right) \\ 2j_{n+r+1} - \left(s-t\right)j_{n+r} & st\left(2j_{n+r} - \left(s-t\right)j_{n+r-1}\right) \end{pmatrix} - \left(-st\right)^r \begin{pmatrix} \left(s-t\right)j_{n-r+1} + 2stj_{n-r} & st\left(\left(s-t\right)j_{n-r} + 2stj_{n-r-1}\right) \\ 2j_{n-r+1} - \left(s-t\right)j_{n-r} & st\left(2j_{n-r} - \left(s-t\right)j_{n-r-1}\right) \end{pmatrix}$$

$$= \begin{pmatrix} (s+t)j_{n+r+1} & st(s+t)j_{n+r} \\ (s+t)^2J_{n+r} & st(s+t)^2J_{n+r-1} \end{pmatrix} - (-st)^r \begin{pmatrix} (s+t)j_{n-r+1} & st(s+t)j_{n-r} \\ (s+t)^2J_{n-r} & st(s+t)^2J_{n-r-1} \end{pmatrix}
= \begin{pmatrix} (s+t)(j_{n+r+1} - (-st)^r j_{n-r+1}) & st(s+t)(j_{n+r} - (-st)^r j_{n-r}) \\ (s+t)^2(J_{n+r} - (-st)^r J_{n-r}) & st(s+t)^2(J_{n+r-1} - (-st)^r J_{n-r-1}) \end{pmatrix}.$$
(16)

By using (16) in (15), we get that

$$W^{2}A^{n+r} - (-st)^{r}W^{2}A^{n-r} = \begin{pmatrix} (s+t)(j_{n+r+1} - (-st)^{r}j_{n-r+1}) & st(s+t)(j_{n+r} - (-st)^{r}j_{n-r}) \\ (s+t)^{2}(J_{n+r} - (-st)^{r}J_{n-r}) & st(s+t)^{2}(J_{n+r-1} - (-st)^{r}J_{n-r-1}) \end{pmatrix}.$$

$$(17)$$

Since $(-st)^r \neq 0$ and the matrix multiplication, we obtain that

$$WA^{n} \left(WA^{r} - (-st)^{r} W \left(A^{r}\right)^{-1}\right) = \begin{pmatrix} j_{n+1} & stj_{n} \\ j_{n} & stj_{n-1} \end{pmatrix} \begin{pmatrix} j_{r+1} & stj_{r} \\ j_{r} & stj_{r-1} \end{pmatrix} - \begin{pmatrix} st \left(-2J_{r} + (s-t)J_{r-1}\right) & st \left(2J_{r+1} - (s-t)J_{r}\right) \\ (s-t)J_{r} + 2stJ_{r-1} & -(s-t)J_{r+1} - 2stJ_{r} \end{pmatrix}.$$
(18)

By Lemma 8 (i) and (ii), we have

$$\begin{pmatrix} st(-2J_r + (s-t)J_{r-1}) & st(2J_{r+1} - (s-t)J_r) \\ (s-t)J_r + 2stJ_{r-1} & -(s-t)J_{r+1} - 2stJ_r \end{pmatrix} = \begin{pmatrix} -stj_{r-1} & stj_r \\ j_r & -j_{r+1} \end{pmatrix}.$$
(19)

By using (19) in (18) and matrix subtraction, we ge

$$WA^{n} \left(WA^{r} - \left(-st\right)^{r} W\left(A^{r}\right)^{-1}\right) = \begin{pmatrix} j_{n+1} & stj_{n} \\ j_{n} & stj_{n-1} \end{pmatrix} \begin{pmatrix} j_{r+1} & stj_{r} \\ j_{r} & stj_{r-1} \end{pmatrix} - \begin{pmatrix} -stj_{r-1} & stj_{r} \\ j_{r} & -j_{r+1} \end{pmatrix}$$

$$= \begin{pmatrix} j_{n+1} & stj_{n} \\ j_{n} & stj_{n-1} \end{pmatrix} \begin{pmatrix} j_{r+1} + stj_{r-1} & 0 \\ 0 & j_{r+1} + stj_{r-1} \end{pmatrix}.$$
(20)

By Lemma 8 (v) in (20) and matrix multiplication, we get

$$WA^{n} \left(WA^{r} - (-st)^{r} W \left(A^{r}\right)^{-1}\right) = \begin{pmatrix} j_{n+1} & stj_{n} \\ j_{n} & stj_{n-1} \end{pmatrix} \begin{pmatrix} (s+t)^{2} J_{r} & 0 \\ 0 & (s+t)^{2} J_{r} \end{pmatrix}$$

$$= \begin{pmatrix} (s+t)^{2} j_{n+1} J_{r} & st (s+t)^{2} j_{n} J_{r} \\ (s+t)^{2} j_{n} J_{r} & st (s+t)^{2} j_{n-1} J_{r} \end{pmatrix}. \tag{21}$$

On the other hand, using (17) and (21), we obtain

$$J_{n+r} - \left(-st\right)^r J_{n-r} = j_n J_r.$$

Finally, we find some sum formulas of J_n and j_n by using A^n , B^n , A^nW , and WA^n as follows:

Theorem 13 For $n, r \ge 0$, we have

$$\sum_{i=0}^{r} J_{ni} = \frac{\left(1 - J_{nr+n+1}\right) J_n - \left(1 - J_{n+1}\right) J_{nr+n}}{1 - j_n + \left(-1\right)^n \left(st\right)^n} \,. \tag{22}$$

Proof. It is known that $I-\left(A^n\right)^{r+1}=\left(I-A^n\right)\sum_{i=0}^r\left(A^n\right)^i=\left(I-A^n\right)\sum_{i=0}^rA^{ni}$.

By Lemma 8 (iii) and Lemma 9 (ii), we get

$$det(I-A^n) = 1 - stJ_{n-1} - stJ_n^2 - J_{n+1} + stJ_{n-1}J_{n+1} = 1 - j_n + (-1)^n (st)^n.$$

Since $\det(I-A^n) \neq 0$ we obtain

$$(I - A^n)^{-1} (I - (A^n)^{r+1}) = \sum_{i=0}^r A^{ni} = \begin{bmatrix} \sum_{i=0}^r J_{ni+1} & st \sum_{i=0}^r J_{ni} \\ \sum_{i=0}^r J_{ni} & st \sum_{i=0}^r J_{ni-1} \end{bmatrix}.$$
 (23)

Since $(I - A^n)^{-1} = \frac{1}{1 - j_n + (-1)^n (st)^n} \begin{pmatrix} 1 - stJ_{n-1} & stJ_n \\ J_n & 1 - J_{n+1} \end{pmatrix}$ we have

$$(I-A^n)^{-1}(I-A^{nr+n})$$

$$= \frac{1}{1 - j_{n} + (-1)^{n} (st)^{n}} \begin{pmatrix} 1 - stJ_{n-1} & stJ_{n} \\ J_{n} & 1 - J_{n+1} \end{pmatrix} \begin{pmatrix} 1 - J_{nr+n+1} & -stJ_{nr+n} \\ -J_{nr+n} & 1 - stJ_{nr+n-1} \end{pmatrix}
= \frac{1}{1 - j_{n} + (-1)^{n} (st)^{n}} \begin{pmatrix} (1 - stJ_{n-1})(1 - J_{nr+n+1}) - stJ_{n}J_{nr+n} & -(1 - stJ_{n-1})stJ_{nr+n} + (1 - stJ_{nr+n-1})stJ_{n} \\ (1 - J_{nr+n+1})J_{n} - (1 - J_{n+1})J_{nr+n} & (1 - J_{n+1})(1 - stJ_{nr+n-1}) - stJ_{n}J_{nr+n} \end{pmatrix}.$$
(24)

On the other hand, using (23) and (24), we get

$$\sum_{i=0}^{r} J_{ni} = \frac{\left(1 - J_{nr+n+1}\right) J_{n} - \left(1 - J_{n+1}\right) J_{nr+n}}{1 - j_{n} + \left(-1\right)^{n} \left(st\right)^{n}}.$$

Corollary 14 For $n, r \ge 0$, the following results hold.

(i)
$$\sum_{i=0}^{r} j_{ni} = \frac{\left(1 - \frac{1}{2} j_{n}\right) \left(2 - j_{nr+n}\right) - \frac{1}{2} \left(s + t\right)^{2} J_{n} J_{nr+n}}{1 - j_{n} + \left(-1\right)^{n} \left(st\right)^{n}} ,$$

(ii)
$$\sum_{i=0}^{r} J_{ni} = \frac{\frac{1}{2} \left(2 - j_{nr+n}\right) J_n - \left(1 - \frac{1}{2} j_n\right) J_{nr+n}}{1 - j_n + \left(-1\right)^n \left(st\right)^n} .$$

Proof. The proofs of (i) and (ii) are similar to Theorem 13.

Theorem 15 Let $n, r \ge 0$. It r is an even, then

$$\sum_{i=0}^{r} J_{ni} = \frac{\left(1 + J_{n+1}\right) J_{nr+n} - \left(1 + J_{nr+n+1}\right) J_{n}}{1 + j_{n} + \left(-1\right)^{n} \left(st\right)^{n}}.$$
(25)

Proof. Let r be an even number. Then we have

$$I + \left(A^{n}\right)^{r+1} = \left(I + A^{n}\right) \sum_{i=0}^{r} \left(-1\right)^{i} \left(A^{n}\right)^{i} = \left(I + A^{n}\right) \sum_{i=0}^{r} \left(-1\right)^{i} A^{ni}.$$

By Lemma 8 (iii) and Lemma 9 (ii), we get

$$det(I+A^n) = 1 + stJ_{n-1} + J_{n+1} + stJ_{n-1}J_{n+1} - stJ_n^2 = 1 + j_n + (-1)^n (st)^n.$$

Since $\det(I+A^n) \neq 0$ we can write

$$(I + A^n)^{-1} (I + (A^n)^{r+1}) = \sum_{i=0}^r A^{ni} = \begin{bmatrix} \sum_{i=0}^r J_{ni+1} & st \sum_{i=0}^r J_{ni} \\ \sum_{i=0}^r J_{ni} & st \sum_{i=0}^r J_{ni-1} \end{bmatrix}.$$
 (26)

Since
$$(I + A^n)^{-1} = \frac{1}{1 + j_n + (-1)^n (st)^n} \begin{pmatrix} 1 + stJ_{n-1} & -stJ_n \\ -J_n & 1 + J_{n+1} \end{pmatrix}$$
 we have

$$(I+A^n)^{-1}(I+A^{nr+n})$$

$$= \frac{1}{1+j_{n}+(-1)^{n}(st)^{n}} \begin{pmatrix} 1+stJ_{n-1} & -stJ_{n} \\ -J_{n} & 1+J_{n+1} \end{pmatrix} \begin{pmatrix} 1+J_{nr+n+1} & stJ_{nr+n} \\ J_{nr+n} & 1+stJ_{nr+n-1} \end{pmatrix} \\
= \frac{1}{1+j_{n}+(-1)^{n}(st)^{n}} \begin{pmatrix} (1+stJ_{n-1})(1+J_{nr+n+1})-stJ_{n}J_{nr+n} & st(1+stJ_{n-1})J_{nr+n} -st(1+stJ_{nr+n-1})J_{n} \\ (1+J_{n+1})J_{nr+n} -(1+J_{nr+n+1})J_{n} & (1+J_{n+1})(1+stJ_{nr+n-1})-stJ_{n}J_{nr+n} \end{pmatrix}.$$
(27)

On the other hand, using (26) and (27), we obtain

$$\sum_{i=0}^{r} J_{ni} = \frac{\left(1 + J_{n+1}\right) J_{nr+n} - \left(1 + J_{nr+n+1}\right) J_{n}}{1 + j_{n} + \left(-1\right)^{n} \left(st\right)^{n}}.$$

Corollary 16 Let $n, r \ge 0$. It r is an even, then

(i)
$$\sum_{i=0}^{r} j_{ni} = \frac{\frac{1}{2} (2 + j_n) (2 + j_{nr+n}) - \frac{1}{2} (s+t)^2 J_n J_{nr+n}}{1 + j_n + (-1)^n (st)^n},$$

$$(ii) \qquad \sum_{i=0}^{r} J_{ni} = \frac{\frac{1}{2} \Big(2 + j_n \Big) J_{nr+n} - \frac{1}{2} \Big(2 + j_{nr+n} \Big) J_n}{1 + j_n + \left(-1 \right)^n \left(st \right)^n} \; .$$

Proof. The proofs of (i) and (ii) are similar to Theorem 15.

Theorem 17 For $m, k \ge 0$ and $n \ge 1$, the following results hold.

$$(\mathrm{i}) \qquad J_{mn+k} = \sum_{i=0}^m \binom{m}{i} \big(st \big)^i \big(J_{n-1} \big)^i \big(J_n \big)^{m-i} \ J_{m+k-i} \ ,$$

$$(\mathrm{ii}) \qquad j_{mn+k} = \sum_{i=0}^m \binom{m}{i} \big(st\big)^i \left(J_{n-1}\big)^i \left(J_n\right)^{m-i} \, j_{m+k-i} \; .$$

Proof. Since Lemma 5 (i), we can write

$$(A^n)^m A^k = (J_n A + st J_{n-1} I)^m A^k$$
$$= \sum_{i=0}^m {m \choose i} (J_n A)^{m-i} (st J_{n-1})^i A^k$$

$$= \sum_{i=0}^{m} {m \choose i} (st)^{i} (J_{n-1})^{i} (J_{n})^{m-i} A^{m+k-i}.$$
 (28)

By the power property of a matrix, we have

$$\left(A^{n}\right)^{m}A^{k} = A^{mn+k} . \tag{29}$$

By using (28) and (29), we obtain

$$J_{mm+k} = \sum_{i=0}^{m} {m \choose i} (st)^{i} (J_{n-1})^{i} (J_{n})^{m-i} J_{m+k-i}.$$

The proof of (ii) is similar to (i). Therefore, the proof is complete.

Discussion

In this paper, we show that X -matrix and Y -matrix satisfying to $X^2 = (s-t)X + stI$ and $Y^2 = (s+t)^2I$. Moreover, we establish particular cases of these matrices: A -matrix, B -matrix, and W -matrix that are useful to obtain many new identities of the modified (s,t) Jacobsthal and modified (s,t) Jacobsthal - Lucas numbers by using some properties of matrix operations.

Conclusions

In this paper, we consider the modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers, and we develop generating the 2x2 matrices A -matrix, B -matrix, and W -matrix. After that, we get some identities of the modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers, some identities of the relation between modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers, and some sum formulas for the modified (s,t) Jacobsthal and modified (s,t) Jacobsthal – Lucas numbers by using these matrices representation and some properties of matrix operations. Furthermore, we conjecture which this concept extends negative subscript and develops to the n x n matrix consisting of elements of other recurrence relations.

Acknowledgments

This research was supported by the Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani, THAILAND.

References

Clarke, J.H. & Shannon, A.G. (1985). Some Generalized Lucas Sequences. *The Fibonacci Quarterly*, 23(2), 120 – 125.

- Horadam, A. F. (1961). A Generalized Fibonacci Sequence. *The American Mathematical Monthly*, 68(5), 455–459.
- Horadam, A. F. (1996). Jacobsthal Representation Numbers. The Fibonacci Quarterly, 34(1), 40 54.
- Koken, F. & Bozkurt, D. (2008). On the Jacobsthal Numbers by Matrix Methods. *International Journal of Contemporary Mathematical Sciences*, 3(13), 605 614.
- Rabago, J. F. T. (2014). Some new properties of modified Jacobsthal and Jacobsthal Lucas numbers.

 In *Proceedings of the 3rd International Conference on Mathematical Sciences*. (pp. 805-818). New York:

 AIP.
- Rabago, J. F. T. (2015). More new properties of modified Jacobsthal and Jacobsthal Lucas numbers. *Notes on Number Theory and Discrete Mathematics*, *21*(2), 43 54.