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Introduction

The Fibonacci numbers F, , Lucas numbers L., Pell numbers P, , and Pell-Lucus numbers Q, are

. o r"—r
examples of the famous number generated by recurrence relation. Their Binet's formulas are F =2—2 |
r—r
1 2

n

n_ n
L,=r"+r", P, = a =P ,and Q, =a"+ ", where n is aninteger, I, =%(1+«/§) A :%(1—\/5) are roots of

t2-t-1=0 and a=1++2 B =1-2 are roots of t?—2t—1=0. So r—-r,=56, L=-1, o=z,
a+p=2, a—,B:Z\/E, and aff =-1. (Horadam, A.F., 1961), (Daykin, D.E. & Dresel, L.A.G., 1967), (Horadam,
AF., 1984).

In 1985, Alwyn F. Horadam and Brother J.M. Mahon studied properties of the sequences of Pell polynomials
P, (x) and Pell-Lucas polynomials Q, (x) . For a natural number n, these sequences are defined by the recurrence

relations
P, (X)=2xP_, (X)+P_,(x), (1)
and Q. (X)=2xQ,, (x)+Q,, (). @
with initial conditions By (x)=0, B(x)=1, Q,(x)=2,and Q (x)=2x.
The definitions of negative subscript are extended by
P, (x)=(-1)""P,(x), for n>1, (3)
and Q7r1(x)=(—1)n Q,(x), for n>1. (4)
So, Binet's formulas can be derived as follows
P (x) = M ’
a(x)=B(x)
and Q, (x)=a" (x)+/3”(x) , (6)
where  a(X)= x+x2+1 and B(X)= x—\X?+1 are the roots of t*—2xt—1=0. Then a(x)= B(x).
a(xX)+B(x)=2x, a(x)-B(x)= 2Jx% +1 and a(x)B(x)=-1.By (5) and (6), we have the following elementary

(%)

identity:

P (X)+ P (X) =Q, (X) : ™
The particular cases of the polynomials are P, (1)=P,, Q,(1)=Q,. P [%j =F,,and Q, @ =L,.

n

In 2012, Hasan Huseyin Gulec and Necati Taskara studied the (S,t) -Pell matrix sequence {Pn (S,t)}n N

and (S,t)-PeII- Lucas matrix sequence {Qn(s,t)} consisting of elements of the (s,t)-PeII numbers and

ne N
(s,t) -Pell-Lucas numbers defined by
P.(sit)=2sP_ (s,t)+tP,_,(s,t), for n>2, (8)
and Q,(s:t)=25Q,,(s,t)+tQ, ,(s,t), for n>2, (9)
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2
with initial conditions Po(s,t)z[; SJ Pl(S.t)=(2tS (1)] Qo(s,t)=(z: zsj’a”d Ql(s,t)=£4sz;2t ij

where s?+t>0, s>0, t#0,and s, t are real numbers.
In 2016, Serpil Halici and Sinan Oz introduced the complex Pell and complex Pell — Lucas sequences,

and Gaussian Pell-Lucas sequence {GQH} «» Which are defined by

namely Gaussian Pell sequence {GPn}neN ne

recurrence relations

GP, =2GP, , +GP, ,,for n>2, (10)
and GQ, =2GQ, ,+GQ,_,,for n>2, (11)
with initial conditions Gy =i, GP =1, GQ, =2-2i and GQ, =2+ 2i . Their well-known Binet's formulas are
op - X =B B —pa (12)
a-p a-p
and GQ,=a"+p"—iaB" —ipa". (13)

Also, Gaussian Pell and Gaussian Pell-Lucas are related to Pell and Pell-Lucas. Some identities of the
sequences are
GP, =P +iP,_,,for n>1, (14)
and GQ, =Q, +iQ, ,, for n>1, (15)
with initial conditions P, =0 ,R, =1, Q; =2 and Q =2.
In 2018, Tulay Yagmar and Nusretkaraaslan defined Gaussian modified Pell numbers G(,, and Gaussian

modified Pell polynomials Gg, (x) by

Gq, =2Gq,, +Gq,_,, for n>2, (16)

and Ga, (x) =2xGq,_, (x)+Ga,_, (x), for n>2, (17)
with initial conditions G, =1-i, Gg, =1+i, Gg, (x)=1-xi and Gg, (X)=X+i. Then, their Binet's formulas are
_a"+p" af +pa” 18

Gq, =— = : (18)

y - L) 0 ()0 ) »

In 2018, Serpil Halici and Sinan Oz introduced Gaussian Pell polynomials GP, (x) , which is defined
recurrently by

GP

n+1

(x)=2%GP, (x)+GP, ,(x) ., for n>1, (20)
with initial conditions GP,(x) =i and GR,(x)=1. Their well-known Binet's formula is

op () - L)) e () -A()a (). o

0 a(x)-A(x) a(x)=5(x)

That authors observed that relation between Gaussian Pell polynomial and Pell polynomial is

644



A9ENTINNANARTYIN TIT 26 (RUTUT 1) WNTIAN — BIEIU WA, 2564

BURAPHA SCIENCE JOURNAL Volume 26 (No.1) January — April 2021 UNANNIRE

GP, (x)=P, (X)+iP,;(x). for n>1. (22)
In 2019, Nusret Karaaslan studied modified Pell polynomials qn(x) defined by
0y (X)=2xq,; (X)+0, ,(X). for n>2, (23)

with initial conditions g, (x)=1 and g, (X) =X . Then, the Binet's formula is

o -2 o

In particular, if Xx=1, then g, (1) is the modified Pell number g, .

Methods

In this section, firstly, we find the first few terms of the recurrence relations GP,, GQ,, Gq,, Gq, (X)
GP, (X) ,and q, (X) which the extension of negative subscripts is created by rewriting as GP,_, =GP, —2GP, ,,
GQ,,=6Q,-26Q, ,, Gq, , =Gq, -2Gq,,, Gq, ,(x)=Gq, (X)—2xGaq,_, (x). GP,_, (x)=GP, (x)—2xGP,,(X).
and q,_,(X)=d,(X)—2xq,,(X) as below.

Table 1 The first few terms of GP,, GQ,, Gq,, Gq,(x), GP,(x),and ¢, (x) for 2<n<1.

n: -2 -1 0 1
GR,: ~2+5i 1-2i i 1
GQ,: 6-14i —2+6i 2-2i 2+2i
G, : 3-7i ~1+3i 1-i 1+i
Gq, (%): (2x2 +1)—(4x3+3x)i —x+(2x2+l)i 1 xi ]
GP, (x): —2x+(4x* +1)i 1-2xi i 1
G, (x): 2x% +1 —X 1 X

After that, we define the recurrence relation of a 2x2 matrix for all integer n>-1 in which the component
of each matrix consists of numbers and polynomials of these sequences, and the index starts at 1.
Definition 1 Let neN, x is a scalar-value polynomial, X>0, and x? +1>0. Then the Gaussian Pell polynomial
matrix sequence {MGPH(X)}neN and Gaussian modified Pell polynomial matrix sequence {Man(X)} are

neN
defined by

MGPR, (x) = 2xMGP,_, (x)+MGP,_, (x), (25)

and

MGq, (X) = 2xMGgq,_, (X)+ MG, _, () . (26)
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. R L 1 i 2x+i 1
respectively, with initial conditions MGP, (x) = -t MGR, (x) = Ll

X+i 1—xi 23414 X XA+i
MG = ,and MGq, (x)= .
% (%) {1—xi —x+(2x2+1)iJ an % (x) ( X+i 1—xi]

Definition 2 Let NN . Then the Gaussian Pell matrix sequence {MGPn}nEN , Gaussian Pell-Lucas matrix sequence

ne

{MGQ,} _,, - and Gaussian modified Pell matrix sequence {MGq,} _ are defined by

MGP, = 2MGP, , + MGP, ,, (27)
and
MGQ, =2MGQ, , + MGQ, ,, (28)
and
Man = ZMan& + Man—Z ’ (29)
. I iy 1 i 2+i 1 2421 2-2i
respectively, with initial conditions MGP, =| . .| MGP = |, MGQ, = . .
i 1-2i 1 i 2-2i -2+6i
MGO, = 6+2i 2+2i MGa. = 1+i 1-i and MGa. = 3+ 1+i
o2 2-2i) T T aesi) Sl 1)

Definition 3 Let neN, x is a scalar-value polynomial, X>0, and x*+1>0. Then the Pell polynomial matrix

sequence {MPn (X)}neN , Pell-Lucas polynomial matrix sequence {MQn (X)}neN , and modified Pell polynomial

matrix sequence {qu (X)}neN are defined by

MP, (x) = 2xMP,_, (x)+MP,_,(X)., (30)
and

MQ, (x)=2xMQ, , (x)+MQ,_, (). (31)
and

Mg, (x) = 2xMa,_; (X)+Mq,_, (x), (32)
respectively, with initial conditions MP, (x) = [; SJ MR (x)= (le cl)j , MQy(x)= [ZZX _zxj :

4 +2 2 1 2x2 +1
MQI(X)=[ Xz;r ZX]' M%(X):[)l( _Xj,and Mql(x)=[ Xx+ ﬂ

Note that, for all integer N< 0, we find negative subscripts of matrix sequences in which the extension of

definition is obtained by rewriting

MGP, , (X) = MGP, (x)—2xMGP, , (X). (33)
MGq,_, (X) = MGq, (x)—2xMGq, , () . (34)
MGP._, = MGP. —2MGP,_, (35)
MGQ,_, = MGQ, -2MGQ_ ,, (36)
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Man—Z = Man _ZMan—l ) (37)
MP,_, (X) = MP, (x)—2xMP,_, (x) , (38)
MQn—Z (X) = MQn (X) _ZXMQn—l (X) ’ (39>
and Mg,_, (X) = Ma, (X)—2xMg,_, (). (40)

Results
In this section, the first step, we find the n" general terms of the matrix sequences, which correspond to
the following theorem and corollary.

Theorem 4 For neN. Then the n" terms of {MGPn (X)}nEN and {Man (X)}MN are given by
MGP, (x) = Fa(X) - GR(X) , (41)
GP (x) GP_(x)

and

Ga,..(X) Gq, (x)
MG, (x) :[ cq, (x) anl(x)] . (42)

GP.,(x) GP,(x)

Proof. We will show that MGPn(X)=( GP (X) GP (X)
n n-1

jfor neN.

1

Since, MGPO(X)z(i 12

j , it follows that (41) is true.

. 2X+i
Since, MGPl(x)z( 1

1) . .
, it follows that (41) is true.

By iterating this procedure and considering induction steps, let us assume that the equality in (41) holds for all
n<k eN . To finish the proof.

Next, we have to show that (41) also holds for n =k +1 by considering (20) and (25).

Then MGR,,, (X) = 2xMGR, (x)+MGPR,_, (x)

:ZX[GPm(X) GF}(X)}{GPK(X GP,, x)]

GR (x) GPR._(x)

2XGP,,, (X)+GP, ()  2xGPR, (x)+GP,, (x
:(ZXGPk x)+GP_,(x) 2xGP_,(x)+GP, z(X)j
GPk+2(X) GPM X)
‘[Gpm(x) GPk(x)j

Thus, n=k +1 is true.
The similar proof of (41) is used to prove (42).

Therefore, the proof is complete.
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Corollary 5 For ne N . Then the n" terms of {MGF’”} u {MGQn} 4 and {Man} are given by

ne ne neN
_(GP., GP,
MGP, = , (43)
GP, GP,
and
G G
MGQn :( Qn+l Qn j’ (44)
GQ, GQ.
and
G G
Man :[ qn+l qn ] (45)
Ga, Gaq,,

Proof. Take X =1 in (41) and (42), we have (43) and (45).
The similar proof of Theorem 4 is used for (44).

Corollary 6 For neN. Then the n" terms of {MP, (X)}neN . {MQ, (x)}ngN, and {Mq, (x)} are given by

neN

P (X):(m(x) Pn(x)] (46)

" P(x) P.L(x))

" o (0-{ % &) (47)

and

_ qn+1(X) qn(X)
a0 ) ) e

Proof. The similar proof of Theorem 4 is used for (46), (47), and (48).
Next, we find Binet's formulas of the matrix sequences that lead to some identities. These formulas
correspond to the following theorem and corollary.

Theorem 7 Let Ne N .. Then, the Binet's formula for {MGP, (X)}ne and {MGq, (X)}neN are given by
)

X(Mea(x)—a(x)mepo(x)), (49)

a(x)=B(x) (x)=5(x)
and
MGq, (x) = #(Xﬂ)(x)(Mqu (x)—B(x)MGq, (x))—#(z)(x)(Mqu(x)—a(x) MGq, (x)).  (50)

Proof. Let C;,C, be the 2x2 matrices and «a(X) = x+x2+1, B(x)= x—~/x* +1 be the roots of t? —2xt—1=0.
Then the general term of (25) is

MGP, (x) =c,a" (X)+¢,B8" (X). (61)
Take N=0 and n=1 in (51), we get
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MGP, (x)=¢, +cC,, (52)
and MGR, (x) =ca(x)+¢,B(x) . (53)
By using (52), (53) and scalar multiplication to find ¢, and ¢, , we obtain
1
=—————(MGR (x)-B(X)MGP, (x)), (54)
G a(x)—ﬁ'(x)( () -B(x) » ( ))
1
and c,=——————(MGP, (X)—a(X)MGP, (X)) . (55)
=000 (MBR (X)) MR ()

MGPn(x)zL()

The similar proof of (49) is used to prove (50).

Therefore, the proof is complete.

Corollary 8 Let n e N. Then, the Binet's formula for {MGPn}nEN , {MGQn}neN ,and {Man}nEN are given by
an n
MGP, =ﬁ(mea_ﬂmeg)_aﬂ7(mea_amea), (56)
and
an n
MGQ, = a_ﬁ(MGQl—ﬁMGQO)—aﬂ_ﬁ(MGQl—aMGQO), (57)
and
MGq, = a’ (MGq, — BMGq, ) - £ (MGq, —aMGq, ). (58)
" a-p a-p

Proof. Take X =1 in (49) and (50), we have (56) and (58).
The similar proof of Theorem 7 is used to (57).

Corollary 9 Let N e N. Then, the Binet's formula for {MP, (x)}neN . {MQ, (x)}neN .and {Mg, (x)}neN are given by

X —L(X) X)— (X X —L(X) X)—a(X X
MR, ()= o= MR 00 =B MR (0) 5 s (MR () -a (MR (). (59
and
X =L(X) X)—B(x X —L(X) X)—a(X X
MQ, (%)= 253 (MR (0= ALOMQ ()~ 525 (MQ ()= ()MQ, (). (60
and

M, ()=~ (v, (00~ ()Mo, () E 0 v ) -mi, 1)

Proof. The similar proof of Theorem 7 is used to prove (59), (60), and (61).
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Next, we find the n" power of MPl(X) and MP,, for any integer n>0, which are symmetry. They

correspond to the following lemma.

Lemma 10 For ne N, the n" power of MP,(x) and MP, are given by

() (MR(x))" =MP,(x),

(i) (MR)"=MP,.

. 1 0) £
Proof. Since, MP, (X) = 01 , it follows that (i) is true.
. 2x 1) N
Since, MP,(x)= 1 ol it follows that (i) is true.

We assume the result is true for a positive integer n =k then

e )-( ]- m)

R(x) Ralx

We consider a positive integer n=k +1 .

Then (MR ()" = (MR (x )) MR, (x)
_ Pk+l X) Pk(x)] 2x 1
(x) Ra(x)
_ 2ka+1( )+R(x) M( )j
2R (X)+PR_,(x) P.(x)
_ P2 (X) k+l(x)
Pea(X) R (x)
= MR, (x )

Thus, the statement is true when n=k +1.
Take X =1 in (i), we have (ii).
Therefore, the proof is complete.
After that, we find some identities of the relations between the studied sequences of numbers and polynomials,
which corresponds to the following lemma.
Lemma 11 For m,n € N, the following results hold.

(i GP

i (X) B (X) +GRy (X) Ry (X) =GRy, (%),
(i) Gy (X) P, (X)+Gay, (X) Py (X) =Gy, (X)
(i) GP,,P,+GP.P_, =GP, ..,

('V) GQm+an + GQm Pn—l = GQern ’
(V) qu+1Pn + qu Pn—l = qu+n ’
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M) Py (X) B (X) + By (X) B () = R (%),

(vil) - Qg (X) P (¥)+Qq (X) Py (%) = Qe (X)

(Vi) .y (X) Py (X)+ U (X) P (X) = G (%)

(ix) GP,,(X)+GP,_,(x)=2Gq,(x).

(x) GP,+GP _, =2Gq,,

0 By (X)Quua (%) + B (X)Qu (¥) = Ponz (¥) + Pon (%) = Qs (%)

(i) By (%) Quia (%) + Py (X) Q4 (X) = Poy (%) + Py 1 (X) = Qo (%) = Ry (¥)Q, (%) + R, (X) Q1 (X)

(iii) By (X)Qy (%) + Py (X) Qs (X) = Py (X) + oz (X) = Qu 4 (X)

Proof. Since (5), (21) and a(X)=x+x*+1, B(x)=x-x*+1 be the roots of t* —2xt—1=0, we have

GP,..(X)P, (x)+GP, (X)P,_,(x)

:[am (x)- ,8"‘l(x)+ia(x)ﬂ””l(x)—ﬂ(x)a’““(X)J.((x”(x -p
(%)= A(x) A(x) (x)-5

= am+n+lx_am+1xﬂn X—Oln X'Bm+1x+ﬂm+n+1x
A a0 (= (8 57

+am+n—1(x)_am (X)ﬂn—l(x)_an—l(x)ﬂm (X)+ﬂm+n—l
+ia"+1(X)ﬂm+1(x)—ia(x)ﬂm+”+l X H
+ia" (x) A" (X)—ia(x) ™" (X)—-iB(X)a™ "

: [“’"*"(x)—” 0 _am (3 r (2021

“a(x)-B(x) a(x)-B(x) a(x)-B(x) a(x)-B(x
e BOOFB0 e a(0B(OFL e B+ (X)
B 000 e T (08" () (8™ ()07 500

—ig(x)a™" (x)M+iam (X) 8" (x)a X)ﬂ(X)JrlJ

a(x)-pB(x) ()= A(X)
= a0 A () ()87 ()i (x)a ()
:am+n(x)_ﬁm+”(x)+ia(x)ﬂm (X)—,B(x)am (x)

@(x)-A(x) ()~ A()
=GP, (x).

Thus, GP,, (X)P, (X)+GP, (X)P. (X)=GP,.. (X).
The similar proof of (i) is used for (i), (iii), (iv), (v), (vi), (vii), and (viii).

Next, we will show that GP,,, (x)+GP, , (x) =2Gq, ().
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By (21), we have
GR...(X)+GR(x)

)AL a0 (0B e (- | a8 (- A ()
a(x)-B(x) a(x)=pB(x) a(x)-B(x) a(x)-B(x)
o (x a(X)+at(x) ., B(X)+B7(X)
W ata-500 7 a0
+Ha (x)B" (x ’B(X)Jr’gil(x) iB(x)a"(x a(x +a’1(x)
O at-m00 PP M at=500
=a" (x)+ 4" (x)—ia(x) 8" (x)-iB(x)a" (x)
=2Gq, (x).

Thus, GP,,,(X)+GP,, (X)=2Gq, (x).
Take x=1 in (ix), we have (x).
Next, we will show that P

n+l( )Qn+1 (X)+ I:>n (X)Qn (X) = P2n+2 (X)+ PZn (X) = Q2n+1(X) .
By (5) and (6), we have

Pn+1(X)Qn+1(X)+Pn(X)Qn(X)
— anﬂ(x)_ﬂnﬂ(x) (™ (x)+ 8™ (x)) + an(x)_ﬁn(x) Aa" (x)+ B" (x
_( a(x)—ﬂ(x) J( ( ) B ( )) ( B x) j( ( ) B ( ))

_ C¥2n+2(x)_ﬂ2n+2(x)—"_a2n (X)_ﬁZn (X)
a(x)-B(x) a(x)-B(x)
=Pys (X)+ Py (%) - (62)

Since (7), we obtain

Poniz2 (X)+ Pon (X) = Qs (X). (63)
By using (62) and (63), we have
Pz (%) Qua (%) + By (X)Q, (%) = Qpns (X) -
Thus, B, (X)Qus (X)+ Py (X)Q, (X) = Panz (X) + Pan (X) = Qo (%)
The similar proof of (xi) is used for (xii) and (xiii).
Therefore, the identities (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix), (x), (xi), (xii), and (xiii) are immediately seen.
Also, we find the relation between these matrix sequences by applying Lemma 10 and Lemma 11. They
correspond to the following theorem and corollary.

Theorem 12 For m,n € N, the following results hold.
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() MGPR, (x)(MR(x))" = MGP,.,(x),

m+n

(i) MG, (x)(MR(x))" =MGq,,,(x).,
(i) MGP,,,(x)+MGP,_ (x)=2MGq,(x).

n+l

Proof. By Lemma 10 (i), we can write
MGP, (x)(MP,(x))" = MGP, (x)MP, (x).
Since (41), (46), and matrix multiplication, then

GR,..(X)  GR,(X) ](PM(X) PPn(X J

MGF, (x)MF, (x) = [GP() P, () B(x) P (x)
[GPM( )P.1 (X)+GP, (X)P,(x) GP,.,,(x) Pn(x)+GPm(x)Pn1(x)J
GP, (x)

By using Lemma 11 (i) in (65), we have

(i)
i1 (X) Proa (X) +GP, (X) Py (X) - GP,.y (X) P, (X)+GP, (X) P, (%)
MGF, (x)MF, (x) = [ep (%) M(x)+G L()P(X) G, (X)P, (X)+GP, , (x)P nl(x)j
( m+n+l(x) GPm+n( )j
GPm+n(X) GPm+n 1( )
~ MGP,., (x)

m+n

By using (66) in (64), we obtain

MGP, (x)(MR ()" = MGP, ., (x).

m+n
The similar proof of (i) is used for (ii).

Next, we will show that MGP,,, (x)+MGP, , (x) = 2MGq, (X) .

n+l
By (41) and matrix addition, we can write
GP,,, GP GP.
( + MGP n+ X n+1 X) + n (X) n—l(
GF’M1 (x) P.(x) GP_,(x) GP_,(
GP,.,(x)+GP,(x) GP,,(x)+GP, (x j

Gn+1 +GPnl ) GPn( )+GPnfz(X)

MGP,

n+l

)

By using Lemma 11 (ix) in (67), we get

MGPn+1( + MGP GPn+2 +GP ) GP"+1( )+GPn—1(X)
GPnJr1 +GP ) GPn( )+GPn72(X)
ZGqn+1 2Gq, (x)
2an 2Gq, , (X)

Gg, (x) Ga,,(x)
=2MGq, ().

_ (qu( ) Ga, (x )J

P (X)+GP,_, (X)R,(x) GP,(x)P,(x)+GR,(x)P,_,(x) '

UNANNIAE
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Therefore, the identities (i), (ii), and (i) are immediately seen.

Corollary 13 For m,n € N, the following results hold.

() MGP,(MR)" =MGP,,,

(i) MGQ, (MR) =MGQ,.,.

(i) MGg, (MR)" =MGdq,,.,.

(iv) MGP,, +MGP,_, =2MGq, .

Proof. Take X =1 in Theorem 12 (i), (ii), and (iii), we have (i), (iii), and (iv).
The similar proof of Theorem 12 is used for (ii).

Corollary 14 For m,n € N, the following results hold.

() MR, (x)(MP(x))" =MP,, (x),
(i) MQ, (X)(MR (X)) =MQ,., (x).
(i) Md, (x)(MP(x))" =M., (x).
) Mm )+ MP, ()= MQ, (x).

(v) ( )MQ( ) 2n+1( )+MPZn 1( ):Man(X)'

Proof. The similar proof of Theorem 12 is used for (i), (ii), (iii), and (iv).
Next, we will show that MP, (X) MQ, (x) = MP,,,, (X)+MP,,_, (X) = MQ,, (X).
By (46), (47) and matrix multiplication, we have

P

_ n+1(x) Pn (X) Qn+l(x) Qn (X)
MPn(X)MQn(X)—( P,(x) Pnl(x)]( Q. (x) in(x)j
_ (PM () Qs () + P, (X)Qu (%) Pt (¥)Q, (X) + P (X) Qs (X)J . (68)
Py (%) Quia (X) + Py () Q0 (%) By (X)Q, (X)+ Py (X)Quy (X)

By using Lemma 11 (xi), (xii), and (xiii) in (68), we can write

vt (X)Qua (%) + P (%) Q, (%) M(X Q. (x)+
MP, (x)MQ, (x) = [P (X)Qu.r ()P, (¥)Q ( ) X)Q, (
:[%mz( J+Pu(X) Pt (04 Pors ]

PZn+1( )+P2nfl(x) PZI‘I +P2n 2 X)

By matrix addition, we have

[w VP (X) Py (X)+ Py (1 )HPM) Pml(x)H P (%) Pm(x)) -

Ponia (X)+ Py () Pop (X)+ Py (%) Poria (X)  Pon (X) Pori(X) P (X)

;U

(X)Qu1 (%)
)Q, (¥)+P1 (¥)Q, (X)J

By using (69) and (70), we get that
MPn (X)MQH (X): 2n+1(x)+MPZn 1( ) (71)
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By (iv), we obtain
MP,p.1 (X)+ MPy,; (X) = MQy, (%) (72)
By using (71) and (72), we get
MP, (x)MQ, (x) = MQ,, (x).
Thus, MP,(X)MQ, (X)=MP,,,; (X)+MP,_, (x)=MQ,, (X).
Therefore, the identities (i), (ii), (iii), (iv), and (v) are easily seen.
Moreover, we get a particular case, which corresponds to the following corollary.
Corollary 15 For n e N, the following results hold.
() MGR (x)(MR, (x))" = MGP, (x)
(i) MGP,(MPR)" = MGP,,
(i) MP,(x)(MR(x))" = MP, (x).
Proof. Take m=0 in Theorem 12 (i), Corollary 13 (i), and Corollary 14 (i), we obtain (i), (i), and (iii).

Therefore, the identities (i), (ii), and (iii) are easily seen.
. 1 0). _— .
Note that matrix MP, (x)= 0 1 is an identity matrix.

Now, we find that the matrix is a symmetric matrix, which is equal to its transposition as in the following
theorem and corollary.
Theorem 16 For m,n € N, the following results hold.

() (MGP,(x)MGP,(x)) =MGP, (x)MGP, (x),

(i) (MG, (x)MGg, (x)) = MG, (x)MGg, (X).
Proof. Since the transpose of the matrix, we obtain
(MGP, (X)MGP, (x))" =(MGP, (x))" (MGP, (x))" = MGP, (x)MGP, (x).
The similar proof of (i) is used for (ii).
Therefore, the identities (i) and (ii) are easily seen.
Corollary 17 For m,n € N, the following results hold.
() (MGP,MGP,)" = MGP,MGP,,
(i) (MGQ,MGQ,)" =MGQ,MGQ, .
(i) (MGg,MGg,)" =MGg,MGq,, .
Proof. Take X =1 in Theorem 16 (i) and (i), we have (i) and (iii).

The similar proof of Theorem 16 is used for (ii).
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Corollary 18 For m,n € N, the following results hold.
i) (MP,(x)MP,(x))" = MP, (x)MP, (x),
(i) (MQ, (Xx)MQ, (x))" =MQ, (x)MQ, (),
(i) (Mg, (x)Mg, (x))" = Mg, (X)Mg, (x).
Proof. The similar proof of Theorem 16 is used for (i), (i), and (iii).
Finally, we find some identity matrix sequences of summations by using Binet’s formulas (49), (50), (56), (57),

(58), (59), (60) and (61) as the following theorem and corollary.

Theorem 19 For ne N, x>0, and x*+1> 0, the following equalities hold.

) L 1 e SN S

(i) gtk MGR(x)= _2xt_1(t MGP, (x)+tMGP., (x)) o020 ) (tMGP,., (x)+ MGP, (X)),
Lol 2

(II) ét—kMqu (X) = m(t MGqO (X)+tMqul (X))—m(tMqul (X)+ Man (X)) .

Proof. Let MGR,(x), MGP,(x) be initial conditions of 2x2 matrix sequence and a(X)=X++x*+1,
B(x)=x—x*+1 be the roots of t? —2xt—1=0.

Then we can write

> FMCR, ()
_3 o (x) B (%)
_§(tk (a(x)_ﬂ(x))(MGH(x)—ﬁ(X) 'V'Gpo(X))—W(MGH(X)—G(X)MGPO(X))]- (73)

By definition of a geometric sequence, we have

3 e M - v, 1) -, 1)

e (0)(-A(X) )~ B(X)MGR, (x
_tM(a(x)_,B(X))(t—a(x))(t_ﬂ(x))(MGPl( )= B(X)MGP, ( ))
t(tn+1 _,Bnﬂ(x))(t—a(x))

" (a(x)- B(x))(t-B(x))(t-a(x))

Since (t—a(x))(t—ﬂ(x)) =t2—2xt—1, we can write

(MGR, (x)-a(X)MGP, (x)). (74)
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(MGP, (x)—a(X)MGP, (x)) . (76)

a t”(t2—2xt—1)(a(x —ﬂ(X)) (MGPl(X)_a(X)MGPO(X))
1

=5 G _th_l) (t"*ZMGPO (X)+t"*MGR, (x) - (& (x) + B(X))t""MGP, (x) ~tMGP, , (x) - MGP, (x))

:t"(t2 th 1)(t"*ZMGPO(x)+t"*1(MGPl(x)—2xMGPU(x))—tMGPM(x)—MGPn(x))- (77)
- X -

Take n=1 in (33), we can write
MGPR, (X)— 2XMGP, (x) =MGP, (x) ) (78)

By using (78) in (77), we obtain

51 1
ZTMGPk (X)

=—— = (t""°MGP, (x)+t"*MGP, (x)—tMGP ., (x)—MGP, (x
ot t”(t2—2xt—1)( b (x) 4 (%) (%) ()
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1
= m(tzMGPO (X) +tMGP_1 (X))—

1
—— (tMGP,, +MGP, (x)).
23 (MG ()4 MR (1)
The similar proof of (i) is used for (ii).

Therefore, the identities (i) and (ii) are immediately seen.

Corollary 20 For neN, x>0, and x? +1> 0, the following equalities hold.

01 1 1

[ ~MGP. =————(t?*MGP, +tMGP_, }-————(tMGP MGP

v kzz(;tk ¥ t2—2t—1( o ) t”(t2—2t—1)( o+ MGF,).
11 1 1

—MGQ, = t°MG tMG - (tMG MG

(III) ;tk Qk t2—2t—1( Q0+ Q_l) tn (t2—2t—1)( Qn+1+ Qn) ,

(iiif) Zn:iMqu ;(tzMGq +tMGq )—;(tMGq +MGq, ).
=t t?-2t-1 ° e (r-2t-) m "

Proof. Take X =1 in Theorem 19 (i) and (ii), we have (i) and (iii).
The similar proof of Theorem 19 is used for (ii).

Corollary 21 For ne N, x>0, and x*>+1> 0, the following equalities hold.

Lol 1 1

(i kZ:(;t—k'V'Pk el 'V'Po(X)+IMP_1(X))—m(tMPn+1( )+ MR, (%)),

p L e L

(il kzot—kMQk (¥=2 _th_l(t MQ, (x)+tMQ., (x)) o o2x) (tMQ,., (x)+MQ, (x)).
R 1 ) 1

(iif) 2 Ma (x)= m(t Mg, (x)+tMa., (X)>_m(thn+l (x)+Ma, (x)).

Proof. The similar proof of Theorem 19 is used for (i), (ii), and (iii).

Lemma 22 For m, je N and j>m, the following results hold.

() (-1)"MGP,_, (x)= aJ((X);)ﬁﬂm((x))(MGH(X)_,B(X)MGPO(X))—%(MGH(X)—a(X)MG%(X)),
0w, () 22 e () g, )2 00 e -ty ),
) (—l)mMGPj_m=Zj_ (MGP, — BMGP, ) - pla” ﬂ(MGP aMGP,),

) (-1)"MGQ,., = Zj (MGQ, - AMGQ ) - zj_"’;(MGQl—aMGQO),

] pm j,m
(v) (—1)m Mqufmza'B (MGg, - BMGq, ) - fj_aﬂ(Mqu—aMqu),
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o (@B () oy B
(vii) (=1)" MQ;_y, (x) a-(X)—ﬂ(X) (MQI( )= B(X)MQ, ( )) C‘l(X)—IB(X)(MQl( )—a(X)MQy ( ))
) (" M 0= VR v )~ 0w, )22 0 o, 1)1 i 1)
Proof. Since (49) and «(x ):x+\/m, ﬁ(x):x—\/m be the roots of t? —2xt—1=0, we obtain
n_a™"(x) n B (x)

(=1)" MGP_;,(x) =(-1) (MGR (x) = B(X)MGP, (x))=(-1) (MGR (x)—r(x) MGP, (x))

a(x)=A(x)

; )(MGH(X)—a(X)MGPo(X))

——( X)—a| X X
20 00 (MR ()= MR, (1))

X X X —w X)—a(X X
—(MGR(x)- B(xMGR, () (-5 (x) MER(¥)=a(x)MGR (x).

The similar proof of (i) is used for (ii), (iii), (iv), (v), (vi), (vii), and (viii).
Therefore, the identities (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii) are immediately seen.
Theorem 23 For m,n, jeN and j>m, the following results hold.

(i)

gmepmk+j(x)= - (X))l(l_ﬂm (X))(MGP() ()" MGP, , ()~ MGR, ., (x)+(-1) MGR, ., (x))
(ii)
kZ:;Mqum (x)= (1—am (X))l(l_ I (X))(Mqu (x)+(-1)"" MGa,_,, (X)~ MGGy 1., ; (X)+(-1)" MG, ., (x)) ,

Proof. Let a(x)=x+~/x*+1, B(x)=x-~/x*+1 be the roots of t* —2xt —1=0. Then we have

SMGP, . (¥)
k=0

= kzn;(ao([:;:]é)z)x) (MGP1 (X) _ﬂ(x) MGF, (X))_ af:)kijé)&) (MGPl (X) —a(X) MGP, (X))] . (79)

Since definition of a geometric sequence, we have

y U X)—B(x x))— pr(x) X)—a(x X
S i) p0weR ) )R )
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By using Lemma 22 (i) in (80), we have

S 00w ) 10y v, 1) -

R
>
~—
—_—
[EEN
|
R

3
B
e
3
—_~
>
~—
~—
—_—
|I_\
iy
3
—_
>
~—_

Thus,

SMGP, ., (x)= (

T
1-a" (x))(1- 8" (x))

The similar proof of (i) is used for (ii).

Therefore, the proof is complete.

Corollary 24 For m,n, je N and j>m, the following results hold.

. S _ l ] _ m+1 ] _ ) _ m )

(i gMGPmM ) (l_ﬂm)(MGPJ+( 1) MGP,_, ~MGR, ..., +(-1)" MGR,,,, ).

" o _ ) _ m+1 . _ ) _ m .
(i) kZ:(;MGQmM ) 1_ﬁm)(MGQJ+( 1) MGQ,_, ~MGQ ., +(-1)" MGQ, ., ).
1 _ 1 _ o\ o ) _\" )
(i kZ_(;Mqukﬂ-——(1_am)(1_ﬁm)(Mqu+( 1) MG, , ~MGG, ., +(-1)" MGGy, ).

Proof. Take X =1 in Theorem 23 (i) and (ii), we have (i) and (iii).
The similar proof of Theorem 23 is used for (ii).

Corollary 25 For m,n, je N and j>m, the following results hold.

() gmpmkﬂ. (x)= ( L (MP, (3)+ (- MP, , (X)~MP, , 0., () +(-1) MR, ., (x)).

1-a" ()17 ()
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. 1

(i) D MQue.; (X)= (1-a"(x))(1-8"(x))
1

(iif) Z quk+j (X) = ( )(qu (X)+(_1)m+l qufm (X)_ qu N+m+ j (X)+(_1)m qu n+j (X)) :

(MQ, (%) +(<1)™ MQ, 1, (X) = MQy . (¥)+(-1)" MQ, ., ().

1-a" (x))(1- 8" (x)

Proof. The similar proof of Theorem 23 is used for (i), (i), and (iii).

Discussion

In this article, we get some identities of the relation between matrix sequences and summations by applying
some properties of matrix operation, the relation between numbers and polynomials, and Binet’'s formulas of matrix

sequences.

Conclusions

In this paper, some identities of matrix sequences prove by some properties of matrix operation, the relation
between numbers and polynomials, and Binet's formulas of 2 x 2 matrix representation. We obtained especially
some identities of the relationships between matrix sequences. Moreover, we conjecture which this concept extends

to the matrix sequence in terms of other recurrence relations and present the n x n matrix for n>3.
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