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Abstract
In this paper, we presented a mathematical model of Dengue disease to understand its dynamics by
using a set of differential equations to describe the effects between human and mosquito populations. The
epidemic and endemic analyses have also presented along with numerical simulations to verify our model so
that it can be further studied for public health interventions. Meanwhile, our optimal control problem has been
investigated to explore control strategies to stop the Dengue disease outbreak. Our results show that

strategically deployed control measures can reduced the numbers of infectious individuals.

Keywords : Dengue fever, Mathematical model, equilibrium, Optimal control theory

Introduction

Dengue illness has caused from a virus, it is possible to become infected by dengue multiple times
because the virus has four different serotypes known as DEN1, DEN2, DEN3 and DEN4. Dengue viruses are
transmitted to human by the bite of Aedes aegypti female mosquitoes causing Dengue fever (DF). The World
Health Organization has reported that there are an estimated 50-100 million of dengue infection and has killed
an estimated 22,000 people, mostly with the children (World Health Organization, 2010).

There have been many mathematical models (see, e.g., (Esteya 1998; Bowman, 2005; Rodrigues
et al., 2012; Singh et al., 2014) to predict the prevalence and transmission dynamics of dengue disease. . We
assume that the human population is constant. The vector population has a constant recruitment rate, which
depends upon the fractions of eggs and larvae that mature to the adult stage, and a constant per capita
mortality. Therefore, the vector population is asymptotically constant (Esteya 1998). In 2011, Helena Sofia
Rodrigues, et.al. proposed a model based on two populations, humans and mosquitoes, with insecticide
control has been presented. It has been shown that with a steady insecticide campaign, it is possible to
reduce the number of infected humans and mosquitoes and can prevent an outbreak that could transform an
epidemiological episode to an endemic disease (Bowman, 2005). In 2014, B. Singh, et.al. discussed the
effects of vaccination strategies on the dynamic of the dengue disease transmission model with assumption
that a random fraction of the recovered host population can loses the immunity and becomes susceptible
again (Singh et al., 2014). In 2015, Tarig Mohamed, et.al. studied describing the dynamics of dengue fever.
The sensitivity index of the basic reproduction number is carried out in order to establish the relative
significance of the model parameters in the disease spread (Ali et al., 2015). The last three research papers
we mentioned above have presented general ideas to formulate mathematical models with constant control
measures, however, none of above suggested to use optimal control theory to seek cost-effective solutions.
In addition, not many studies have conducted combination of control measures such as vaccine, medical

treatments and elimination of egg or larvae.
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In the remainder of this paper, we will first present the dengue fever model with control measures
incorporated. We will then conduct an equilibrium analysis for the epidemic and endemic dynamics of the
system when the controls are constants. Then, we will turn to time-dependent control system and perform an
optimal control study for the dengue fever model. Numerical simulations will also be presented. Finally, we

round up the paper by conclusion and discussion.

Methods

In this section, we derive a mathematical model with vaccination and treatment for dengue disease

patients. The model is based on monitoring the dynamics of the populations of susceptible humans (s,)

the vaccination (v,). infected humans (1) recovered human (R,). The total human population (N,) is

constant so, N, =S, +V,_+1 + R . There are also four other state variables related to female, aquatic
stage or larva mosquitoes (A,), uninfected female mosquitoes (M), and infected female mosquitoes
(M,).

Let a portion &, 0 <o <1, of newborn host be vaccinated. Assume that the host and vector
population has constant with birth and death rate equal to », and p , respectively, ¢ is average daily biting,
B, B, are transmission probability from M, 1, respectively. Q = is number of eggs at each deposit per
capita and K is maximal capacity of larvae (k * m). A, is maturation rate from larvae to adult and natural
mortality of larva at a rate n,. The recovery rate of the host population is defined by y. ¢, is the

effectiveness of the vaccine, ¢4, is an average treatment, ¢_ is an elimination of egg or larvae. k is number of

larvae per human and m is female mosquitoes per human. For human population the equations are;

ds, (™M, 3
=u N - —+u, +4 |S,,

dt LN, )

v, .5 ( 5 M, \V

— = —|ocpB, —+u ,

dt 1% h L 1Nh h)' h (1)

di, M,
= ﬂl_(sh+O_Vh)_(y+¢2+'uh)lh’

dt N,

dR, ( 51 R

— =+ - #,Ry,

dt 2 h h

and for vector population

aA, Q (1 Al (M M)-(4 # ) A
- m - 5+ i) ms+ +u m’

dt L K J .

M ( . \ ()
=ﬁ'msAm_‘c'B2_+‘uv |Ms'

dt ( "

dM I,
= ﬁz_Msilule

dt N
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Disease-free equilibrium

With constant controls and setting 1, = R, = M, = 0, the disease-free equilibrium (DFE) of the system

(1) and (2) is given by

£,=(S,:V,,0,0,A,,M,,0) ()
Whel’e 50: ,uhNh , A0=A’mstK_HvK(ﬂ’ms+ﬂA+¢3)’
My + @y AnsQn
_ ¢1Nh M _imstK_ﬂvK(/lms+ﬂA+¢3)
o~ ! so '
by + ¢, ,UVQ,“

Next-generation matrix analysis

We start our analysis by determining the basic reproduction number, r,. R, is mathematically defined as the
spectral radius of the next-generation matrix. To compute the basic reproduction number, we use the well-
known method of van den Driessche and Watmough (Van den Driessche, P. & Watmough, J., 2002). By
system (1), 1, and wm , are directly related to the infection. We have

1
|
i

h

h ’—(7+¢2+#h)lh F-,

M .
LT Jep t(s, wov,)
|4 "

| dM | | \ Y I—hM

L at | L ‘N, J

where F denotes the rate of appearance of new infections and "V denotes the rate of transfer of individuals

[
L 'uvMi J

1

into or out of each population set. The next-generation matrix is defined asFv *, where F and v are the
Jacobian matrices given by

[ . cﬁ1(80+o-voﬂ|
},
|

F:Df(go):I h V =DV(e,) = J (4)
I CBM ., . 0 M,
L N ]
where ¢ is DFE defined in Equation (3). By spectral radius, we have
Ro_a(Fv1)_\/02ﬂ1f2M5°(s°+0V°), (5)
N u, (1, +7+6,)

Consequently, based on the work in the paper proposed by Van Den Driessche and Watmough (Van den

Driessche, P. & Watmough, J., 2002), we immediately have the following result:

Theorem1 The disease-free equilibrium of the model is locally asymptotically stable ifR < 1, and unstable if

R, >1.

0

To study the global asymptotic stability of the DFE, we will apply the following result introduced by

Castillo-Chavez et al (Chavez et al., 2001).
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Lemma1 Consider a model system written in the form

dX,

dt = F (X, X,)

dX

dtZZG(X“XZ)' G(X,,0)=0

m

where X e R"™ denotes (its components) the number of uninfected individuals and X,eR
denotes (its components) the number of infected individuals including latent, infections, etc.; X, = (xl*,o)
denotes the disease-free equilibrium of the system. Also assume the conditions (H1) and (H2) below:
(H1) For dx, /dt=F (X,,0) is globally asymptotically stable;
(H2) G (x,,X,)=AX,-G (X, X,), G(X,,X,)20 for (X,X,)eQ, where the
Jacobian a = (6G 10X,)G (xl*,o) is an M-matrix (the off diagonal elements of A are nonnegative) and o

is the region where the model makes biological sense. Then the DFE is globally asymptotically stable.

Theorem2 The DFE of the model (1) is globally asymptotically stable.
Proof. We adopt the notations in Lemmal and verify the conditions (H1) and (H2). In our model,
X, =(S,.V,,R,,A M), X,=(M_,M)) and xl* =(S,.Vy Ry AL M ). We note that the system is linear

and its solution can be easily found as:

M.
upN = C'B1N_+luh+¢1 [S,

We have

#hNh_(#h+¢l)Sh

¢1Sh - /”hvh

- #th

1

I

|

|

|

Aoy (2, +¢ )AI
s ms+ 3+/uA m
<) |

.
|
|
|
I

(
lQ, 1~
ol
L /‘LmsAmi‘uvMs
Thus, R(t)>0, S(t)> S, V(t)>V, A (t)>A,and M (t)> M, as t—» . Hence,

X, = (S,.V,. R, A, M) is globally asymptotically stable for the subsystem (6).

1
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Now, note that

G (X, X,)=AX, -G (X, X,) (@)

where p - ﬁ( Xl*,o)_ Substituting into (7) gives, & (X, X,)= (o,o)T > 0. We complete the proof.

oX,

Endemic equilibrium
When the disease is presence in the population, I, # 0 and M, # 0, there may be several critical

points where I, # 0 and M, # 0, which are the endemic equilibrium points of the model. These points will

* *

be denoted as " = (s, Vv, 1 *,Rh*) #0and g, = (A

h ' h

M

s !

M) =0

m

Local stability
Next, we proceed to analyze the stability properties of the endemic equilibrium. First we prove the

following result regarding the local stability.

Theorem3 The positive endemic equilibrium gl* is locally asymptotically stable.

Proof. The jacobian matrix of the system (1) at x = gl* is given by

lr—(all\/li*+yh+¢1) 0 0 TI
(s, v, ) = I é, ~(ca M| +u,) 0 I
L alMi* O_a1Mi* 7(7+¢2+'“h)J

where @, =—* and W = (y + ¢, + u, ). The characteristic polynomial of ; (e,) 18
Nh
0 = det[3(e)-21"]
=(~2-(aM v+ 8) )(-2-(oa M+, )) (=2~ (r+ ¢+ u,))=0
Thus /11 _ _(alM i*+ﬂh +¢)’ 22 _ —(o'alM i*+ﬂh), /13 _ _(}/+¢2 +Hh)’ which all of the

eigenvalues are negative numbers. Thus, gl* is locally asymptotically stable. We complete the proof.

Results : Optimal control

Now we turn to the more general model with time-dependent controls ¢ (t), ¢, (t), and ¢_(t). We
consider the system on a time interval [0,T]. The function ¢ (t), ¢, (t), and ¢, (t) are assumed to be at least
Lebesgue measurable on [0,T]. The control set is defined as
Q = {4,(1) 4, (1), 4 ()] 0< 4, (1) < fpps 0< b, (1) < bypps O<by(V) <4y} WHETE 6, aND
¢,.., denote the upper bounds for the effort of vaccination, treatment, and elimination rate of egg or larvae,
respectively. The bounds reflect practical limitation on the maximum rate of control in given time period. The

presence of time-dependent controls makes the analysis of our system difficult. In fact, the disease dynamics
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now depend on the evolution of control. In what follows we perform an optimal control study on this problem.

We aim to minimize the total number of infections and the costs of control over the time interval [o, 17; i.€.,

() epd ()8, (1) + 008" (1) + €08, ()1, (1) + 058, (1) ]
min I | , dt (8)
frasac 070 |_ +C41¢3(t)Am (t)+C42¢3 (t) J

Here, the parameters ¢,,, ¢,,, ¢, ¢C,,, C,,, and c,, with appropriate units, define the appropriate costs
associated with these controls. Quadratic terms are introduced to indicate nonlinear costs potentially arising
at high intervention level. The minimization process is subject to the differential equation of our system, which
are now referred to as the state equations. Correspondingly, the unknows |, and M . are now called the state
variables, in contrast to the control variables ¢ (t), ¢, (t), and g, (t). Our goal is to determine the optimal
controls 4" (t), ¢, (t), and ¢, (t), so as to minimize the objective functional in (8).

Let us first define the adjoint functions Ag sy v Ay g o Ay and Zu, associated with the state
equations for s, ,v,,1,,A_,M_ and M, respectively. We then form the Hamitonian, H , by multiplying state

equation, and adding each of these products to the integrand of the objective functional. As a result, we

obtain

Ho= 1)+ 0y (1), (1) + oy (1) + Caidy (1) 1(1) + Cipy,” (1) + 0y (1) A, (1) + 0" (1)
( [ M Yo ( ( M Yo
"'ﬂ'sh L’uhNh - CA —+u, + 4, |ShJ +’1vh L¢1Sh - OCB —F |VhJ
LN, J { N, J
[ M ) ( (. A )
+ﬂ’|h|Cﬂl_l(sh+o-vh)_(7+¢z+luh)lh‘+/1AMLQmL1_ mJ(Ms+Mi)_(ﬂ’ms+¢3+IuA)AmJ
N N, ) K
( (oo, ), )
+2’M5Lﬂ'msAm_|cﬁ2_+‘uv |M5J+1M‘|Cﬁ2_Ms_ﬂvMi|
( N, J ( N, J
. . .~ . . di oH dAa oH
To achieve the optimal control, the adjoint functions must satisfy % _ _ 2" o
dt as, dt ov,
diz _ﬂ, M’*m _ _ﬂ, MMs __ 9H  and d/IM- - _ 9H Wit transversality conditions (or final time
dt a1, dt oA, dt oM | dt M,

conditions): 4, (T)=0, 4, (T)=0, 4, (T)=0, 2, (T)=0, 4, (T)=02and 2 (T)=o0.

The characterization of the optimal control ¢ (t), ¢, (t) and ¢_ (t) are based on the conditions o 0,
o4,

oH _, o respectively, subject to the constraints 0 < ¢ < ¢, , 0<g,<¢, ,ando<g <g¢ .

-0, —=0,

op, o4,
Specifically, we have ¢ (t) = max(o,min (4.(1), ¢1max)), ¢, (t)= max(o,min (4, (1), ¢2m))

andg, (t) = max(O, min (¢, (t), ¢3max))
where ¢1(t):((ﬂ’sh_ﬂvh)sh(t)_cusn(t))/zczz' ¢2(t):(’llhlh(t)_cnlh(t))/zcsz'

and g, (t)= (2, A, (t)-c, A, (1))/2c,,.

Ay 41 'm

e ——
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Due to the presence of both initial conditions (for the state equations) and final time conditions (for the adjoint
equations), and the fact that most models of our interest are nonlinear, the optimal control system has to be
solved numerically. We will use the Forward-Backward Sweep Method to conduct the numerical simulation.

The initial conditions for the problem were:

S, y=N,-E -1, E,,=216,1,=434, R, =0,A =kN, K =kN,, S ,=mN, . The simulations were
carried out using the following values:
Table 1 Dengue fever model parameters.
Parameter Value Reference Parameter Value Reference
N, 480x10° (Rodrigues et 1/ u, 10 (Rodrigues
al.,, 2012) etal., 2012)
c 08 (Rodrigues et 1, 4 (Rodrigues
al.,, 2012) etal., 2012)
B, 0375 (Rodrigues et i 0.08 (Rodrigues
al.,, 2012) et al., 2012)
B, 0.375 (Rodrigues et y 1/4 (Rodrigues
al.,, 2012) etal., 2012)
112, 3 (Rodrigues et Q, 400 (Rodrigues
al.,, 2012) et al., 2012)
Uu, 71%365 (Bowman et al., u, 0.00003 (Bowman
2005) et al., 2005)
K 3 (Bowman et al., m 6 (Bowman
2005) et al., 2005)
5210 , ; ; ; ; ; ; . 0.7 :
1
——— Without medication i : “‘
‘ i !
i \
- 0.5 ‘ \
5 ] \
5 £ 0 \
[2] | g \‘
3 = '
5 503 \
D () \
£ 4 \
0.2 \\
= | \‘\ ——
0.1 ‘\. @2
! ?a
A
3 40 5 60 70 80 9 100 0o 10 20 30 40 50 60 70 80 9 100
Time(in days) Time(in days)

Figure1 Dengue infectious population. Figure2 Rate of controls (¢, 0,.8,).
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First set of parameters, let ¢, =0.03 ¢, =05, ¢, =0.01,¢, =05, c, =0.000000002, c,, = 0.05

and ¢ =0.7.Figurel shows the infection curves for the model with controls (dashed line) and that without

max

the optimal controls (solid line). It is clearly seen the infection level has been reduced due to the incorporation

of vaccine and other controls.

Discussion

We have presented a mathematical model of dengue fever with controls. The equilibrium analysis
has been conducted. The stability of epidemic and endemic points are controlled by the threshold number.
If R, is less than one, then the disease dies out and the disease-free equilibrium is stable. If r  is greater
than one, then the disease persists and the disease-free equilibrium is unstable. We have deployed vaccine,
medical treatments and elimination of egg or larvae to investigate strategies to reduce numbers of infectious
people by using optimal control theory. In conclusion, numerical simulations along with theories have
provided and shown that with strategically deployed vaccination, medical treatment and elimination of egg or

larvae of mosquitoes can reduce the number of infectious dengue fever people significantly.
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