แผนภูมิควบคุมสำหรับกระบวนการผลิตที่มีการแจกแจงแบบปัวซงวางนัยทั่วไป ซึ่งมีศูนย์มากกับการกระจายที่มากเกินจริง

Control Charts for Zero-Inflated Generalized Poisson Process with Over-dispersion

เนรัญชรา เกตุมี

Narunchara Katemee

แผนกคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยีการเกษตร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ตาก Department of Mathematic and Statistics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna TAK. Received : 14 September 2016 Accepted : 10 November 2016 Published online : 14 November 2016

บทคัดย่อ

งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาแผนภูมิควบคุมสำหรับตรวจจับการเปลี่ยนแปลงค่าเฉลี่ยจำนวนรอยตำหนิ (λ) เมื่อกระบวนการผลิตมีการแจกแจงแบบปัวซงวางนัยทั่วไปที่มีศูนย์มาก (ZIGP) ซึ่งมีการกระจายที่มากเกินจริง แผนภูมิแรกคือ แผนภูมิควบคุมผลรวมสะสมเมื่อค่าสถิติผลรวมสะสมสร้างบนพื้นฐานอัตราส่วนล็อกภาวะน่าจะเป็นเรียก λ₂ - CUSUM chart แผนภูมิที่สองคือแผนภูมิควบคุมค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักเอ็กซ์โปเนนเชียลสร้างบนพื้นฐาน ZIGP เรียก EWMA_z-chart แผนภูมิที่สามคือแผนภูมิควบคุมจำนวนรอยตำหนิต่อหน่วยสร้างบนพื้นฐาน ZIGP เรียก c_z-chart ประสิทธิภาพของแผนภูมิ ควบคุมพิจารณาที่ค่าความยาววิ่งเฉลี่ย ผลการวิจัยเมื่อมีการเปลี่ยนแปลงในค่า λ พบว่า EWMA_z-chart มีประสิทธิภาพในทุก ระดับค่าของ λ สัดส่วนของรอยตำหนิเป็นศูนย์ (ω) การเปลี่ยนแปลงค่าเฉลี่ย (ρ) และการกระจายที่มากเกินจริง (φ)

คำสำคัญ : การกระจายที่มากเกินจริง, การแจกแจงแบบปัวซงวางนัยทั่วไปที่มีศูนย์มาก, แผนภูมิควบคุมค่าเฉลี่ยเคลื่อนที่ ถ่วงน้ำหนักเอ็กซ์โปเนนเซียล

*Corresponding author. E-mail : <u>narun_ess@hotmail.com</u>

วารสารวิทยาศาสตร์บูรพา ปีที่ 21 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 2559

Abstract

This paper aims to study charts for detecting the mean of nonconformities (λ) shifts based on the zeroinflated generalize poisson (*ZIGP*) process with over-dispersion. The first chart is the same as a *CUSUM-chart* where *CUSUM* statistics constructed base on log-likelihood ratio called, λ_{z} - *CUSUM chart*, the second chart is the same as a *EWMA-chart* based on *ZIGP* process called, *EWMA_z-chart*, the third chart is the same as a *c-chart* based on *ZIGP* process called, c_{z} -chart. The performance of control the charts was considered from the average run length. The research result shows that for the λ shifts process, the *EWMA_z-chart* is the best for all level of λ , proportion zero_(ω), mean shift(ρ) and over-dispersion(ϕ).

Keywords: over-dispersion, zero-inflated generalized poisson distribution, The exponentially weighted moving average control chart

Introduction

Traditional poisson distribution is inappropriate for an excess number of zero nonconformities in processes. This paper focuses on zero-inflated generalize poisson (*ZIGP*) distribution. The *ZIGP* developed from generalized poisson distribution (*GPD*) has two parameters λ and ϕ , where λ is the mean of the nonconformities in a sample unit and ϕ is the over-dispersion (Famoye and Singh, 2003). *ZIGP* distribution is the generalized poisson distribution combined with a mixture of the proportion of zero nonconformities (ω) (Famoye and Singh, 2006).

The *c*-chart, base on the poisson distribution is used to monitor nonconformities in processes. However, if there is an excess number of zero nonconformities in the processes then the *c*-chart is an unsuitable control chart. This paper is interested in the cumulative sum chart (*CUSUM-chart*) and the exponentially weighted moving average (*EWMA-chart*). Because the *CUSUM-chart* and the *EWMA-chart* are efficient charts to monitor smaller shifts in the process, Montgomery, 2005. Page, 1954 first proposed the *CUSUM-chart* and other authors, Gan, 1990 and Lucas, 1976. Katemee and Mayureesawan, 2013 constructed the *CUSUM-chart* for the *ZIGP* process. They show, that the ω - *CUSUM chart*, λ - *CUSUM chart* and ϕ - *CUSUM chart*, are performed for detecting the mean shift of individual parameter. Gan, 1991 studied the *EWMA-chart* for detecting the λ of the Poisson process. He founded that the *EWMA-chart* was the best for detecting mean shift in λ .

The aim of this paper is to study the influence of *CUSUM-chart*, *EWMA-chart* and *c-chart* based on the *ZIGP* process, in the case where the variance is greater than the mean, called over-dispersion. All of these three charts are used to detect changes in individual parameters of the mean of nonconformities (λ). The measure of

วารสารวิทยาศาสตร์บูรพา ปีที่ 21 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 2559

control chart performance was considered from the average run length (*ARL*). The *CUSUM-chart* and the *EWMA-chart* based on the *ZIGP* process were compared with the *c-chart* based on the *ZIGP* distribution.

Methods

The Zero-Inflated Generalized Poisson (ZIGP) distribution

The probability function is given by: (Famoye and Singh, 2006)

$$\mathbb{P}(\mathbb{Y} = \mathbb{Y}) = \begin{cases} \omega + (1 - \omega) \exp(-\lambda \phi), & \mathbb{Y} = 0 \\ \\ (1 - \omega) \exp\left(-\frac{1}{\phi}(\lambda + \mathbb{Y}(\phi - 1))\right) \frac{\lambda (\lambda + \mathbb{Y}(\phi - 1))^{\mathbb{Y} - 1}}{\phi^{\mathbb{Y}} \mathbb{Y}!}, & \mathbb{Y} > 0 \end{cases}$$
(1)

where y = the random variables of nonconformities in a sample unit,

 λ = the mean of nonconformities in a sample unit based on the *ZIGP* distribution,

 ω = a measure of the extra proportion of zero nonconformity in a sample unit,

 φ = the over-dispersion for *ZIGP* distribution, and

$$E(Y) = (1-\omega)\lambda$$
 and $V(Y) = (1-\omega)\lambda(\varphi^{2} + \lambda \omega)$. (2)

The Cumulative Sum Chart based on a ZIGP distribution (λ_z - CUSUM chart)

1. The λ_{z} - *CUSUM chart* is a *CUSUM chart* for detecting shifts in a parameter λ . The cumulative sum statistics constructed base on log-likelihood ratio for plotting on the λ_{z} - *CUSUM chart* (A_{i}) defined as: (Katemee and Mayureesawan, 2013)

$$A_{i} = max(0, A_{i-1} + D_{i}), \quad i = 1, 2, ...$$
 (3)

The head start value of the cumulative sum statistics $(A_0) = 0$ and D_i is the log-likelihood ratio of *ZIGP* distribution for a shift in parameter $\lambda(\lambda_0)$ defined as follows:

$$D_{i} = D(Y_{i}) = \begin{cases} \ln \frac{\omega_{0} + (1 - \omega_{0}) e^{(-\lambda_{0}\phi_{0})}}{\omega_{0} + (1 - \omega_{0}) e^{(-\lambda_{0}\phi_{0})}}, & Y_{i} = 0 \end{cases}$$

$$\begin{pmatrix} \frac{\lambda_{0} - \lambda_{1}}{\phi_{0}} + \ln(\frac{\lambda_{1}}{\lambda_{0}}) + (Y_{i} - 1)\ln(\frac{\lambda_{1} + Y_{i}(\phi_{0} - 1))}{\lambda_{0} + Y_{i}(\phi_{0} - 1)}), & Y_{i} > 0 \end{cases}$$

$$(4)$$

where y_{i} = the observations of y taken at the time *i*,

- λ_{a} = the in-control value of the mean number of nonconformities for ZIGP distribution,
- λ_{\perp} = the out-of-control values of the mean number of nonconformities for ZIGP distribution,
- ω_{a} = the in-control value of the proportion of zero nonconformity for ZIGP distribution,
- ϕ_{a} = the in-control value of the over dispersion for ZIGP distribution,

The λ_{z} - *CUSUM chart* will signals in the process when $A_{i} > H_{\lambda}$, where H_{λ} is the *UCL* of the λ_{z} - *CUSUM chart* i that is determined based on require in-control performance.

The Exponentially Weighted Moving Average chart is based on ZIGP distribution (EWMA₇-chart)

The *EWMA*_z-chart is the same as a *EWMA*-chart based on detection of changes in parameter λ of the *ZIGP* distribution. The *EWMA* statistics for plotting on the *EWMA*_z-chart (\mathbb{Z}_{\pm}) are defined as

$$Z_{i} = \xi Y_{i} + (1 - \xi) Z_{i,1}, \quad i = 1, 2, ...$$
 (5)

The head start value of the EWMA statistics $(\mathbf{Z}_{n}) = \mathbf{\lambda}_{n}$

where ξ = a constant that determinations must satisfy $0 < \xi \ \mathbf{\pounds}_1$,

 y_i = the observation of y taken at time i,

 λ_{1} = the in-control value of the mean number of nonconformities for ZIGP distribution,

The *EWMA*_Z-*chart* will signal in the process when $Z_i > H_{EWMA}$, where H_{EWMA} is the *UCL* of the *EWMA*_Z-*chart* that is determined based on required in-control performance.

The Shewhart control chart of nonconformities is based on ZIGP distribution (c_7 -chart)

The c_z -chart is the same as a *c*-chart based on detecting shifts in parameters of the *ZIGP* distribution. The upper control limit (*UCL*) of the c_z -chart is $c + L \sqrt{c}$, where *c* is assumed to be the mean number of nonconformities if the mean of the probability distribution is known and L is the coefficient of control limit of *c-chart*. The c_{Z} -*chart* will signals when any observations of nonconformities (y_{\pm}) is greater than H_c, where H_c is the *UCL* of the c_{Z} -*chart* that is selected matching the desired in-control performance.

Simulation Results

In the simulations where the average run length (*ARL*) was close to the target, the mean number of nonconformities of: $(\lambda_{0}) = 2.0$ and 4.0 was set. The proportions of zero nonconformity were: $(\omega_{0}) = 0.3$ and 0.5. The over dispersions were: $(\varphi_{0}) = 1.2$ and 1.4. The out-of-control values of the mean number of nonconformities were: $\lambda_{1} = \lambda_{0} + \rho_{0}$, where the mean shifts were: $(\rho_{0}) = 2, 3, 4, 5, 6, 7$ and 8. The *ARL* was the criteria for evaluating the performance of the control charts. The seven steps of the research process were:

1. The R program was used to simulate the number of nonconforming items for a *ZIGP* where the parameters $Were(n, \lambda_{0}, \phi_{0}, \omega_{0})$.

2. The three value of upper control limit were: the value of H_{λ} for λ_z - *CUSUM chart*, the value of H_{EWMA} for *EWMA_z*-chart and value of H_c for c_z -chart. Each value of λ_o , ω_o and φ_o was set in the study. However, the values of H_{λ} , H_{EWMA} and H_c were changed to match *ARL*₀ = 370 for all charts. Calculations, based on 100,000 replications, for the average upper control limit that were in each the parameters.

3. For the λ_{2} - *CUSUM chart* calculations of the log-likelihood ratios for the cumulative sum statistics (D_{1}) were plotted in the A_{1} value from (3). The *EWMA_z*-chart, calculated the Z_{1} value from (5) were used for the *EWMA_z*-chart. The *c_z*-chart, simulation of the numbers of nonconforming (γ_{1}) were used for the *c_z*-chart.

4. The λ_z - *CUSUM char*, investigated the A_i value with H_λ to find the run length (*RL*). The *EWMA_Z-chart*, investigated the Z_i value with H_{EWMA} value. The c_Z -chart, investigated the Y_i value with H_c value. Consider investigating the A_i , Z_i and Y_i that are out-of-control points. When there were points outside the control limit, then they were stored in the observations before a point indicated an out-of-control for the run length (*RL*) calculation. If they were at *i* statistics indicated an out-of-control then *RL* = *i*-1.

5. One hundred thousand (100,000) replications for the average run length (*ARL*) were computed form Steps 3 to 4 for each of the charts.

6. When contrasted the performance of control charts that gave a low ARL, then the control charts were determined efficient.

7. Changing during a parameters value in the study to completely.

Results and Dicussion

An overview of the control charts shows they were proficient for all levels of the parameters and all levels of shifts. Table 1 defines the levels for parameter shifts when $\lambda_{\mu} = 2$, $\omega_{\mu} = 0.3$ and $\phi_{\mu} = 1.2$.

Table 2 shows the upper control limit of λ_z - *CUSUM chart* (H_λ), *EWMA_z-chart* (H_{EWMA}) and c_z -chart (H_c) matched with the *ARL*₀ = 370. It can be seen that all values of λ_a and φ_a . If H_λ increased then ω_a was decreasing. However, H_{EWMA} and ω_a were going in the same direction. The results showed that the c_z -chart returned unsuitable values of *ARL*₀, therefore this paper is not shown.

Table 3 and Fig. 1 show the ARL_1 of λ_2 - *CUSUM chart* and *EWMA_Z-chart* for shift in parameter λ . The results found that for all $\lambda_0, \varphi_0, \omega_0$ and level of a shift, the *EWMA_Z-chart* returned low values of ARL_1 . That the *EWMA_Z-chart* gave a better performance than λ_0 - *CUSUM chart* because it was able to detect the shift faster.

Table 1 Defines the levels for parameter shifts in λ when $\lambda_{0} = 2$

Levels of Shifts	1	2	3	4	5	6	7
parameter shifts in λ ($\lambda_{\mu} = \lambda_{\mu} + \rho$)	$\lambda_{1} = 4$	$\boldsymbol{\lambda}_{1} = 5$	$\boldsymbol{\lambda}_{1} = 6$	$\lambda_{1} = 7$	$\boldsymbol{\lambda}_{1} = 8$	$\lambda_{1} = 9$	$\boldsymbol{\lambda}_{1} = 10$

Table 2 The upper control limit H_{λ}, H_{EWMA} and H_c were matching with the desired in-control performancefor all levels of the λ_{a} , ω_{a} and ϕ_{a}

λ	2	2	2	2	4	4	4	4
ω	0.30	0.50	0.30	0.50	0.30	0.50	0.30	0.50
φ	1.2	1.2	1.4	1.4	1.2	1.2	1.4	1.4
Η _λ	3.50	3.20	4.68	4.49	3.00	2.70	3.31	2.90
ARL_0	370.3	371.5	369.7	366.9	369.2	369.2	372.8	372.7
H _c	8	8	10	9	12	11	14	14
ARL_0	386.2	482.1	489.6	316.2	397.4	290.8	338.6	439.7
H _{ewma}	5.155	5.5	6.107	6.573	8.038	8.252	9.15	9.48
ARL ₀	370.1	370.4	370.1	370.8	370.7	370.0	370.7	370.3

	ρ	φ ₀ = 1.2				$\phi_{0} = 1.4$				
λ		$\omega_{0} = 0.3$		$\omega_{0} = 0.5$		ω ֶ =	0.3	$\omega_{0} = 0.5$		
			EWMA _z		EWMA _z	λ _z - CUSUM	EWMA _z	λ _z - CUSUM -	EWMA _z	
		λ _z - CUSUM	ξ = 0.5	λ _z - CUSUM	ξ = 0.613		ξ = 0.5		ξ = 0.613	
2	2	31.647	16.740	38.757	24.131	47.147	27.834	61.272	39.654	
	3	12.774	7.487	17.121	11.063	18.651	12.906	22.751	19.089	
	4	7.697	4.315	10.449	6.301	10.607	7.153	13.649	10.884	
	5	5.337	2.837	7.635	4.135	7.826	4.640	9.678	7.124	
	6	4.113	2.034	6.042	3.010	5.965	3.220	7.571	4.932	
	7	3.828	1.504	4.980	2.326	4.805	2.418	6.547	3.678	
	8	3.189	1.204	4.649	1.850	4.408	1.899	5.738	2.915	
λ	ρ		EWMA _z		EWMA _z		EWMA _z		EWMA _z	
		λ _z - CUSUM	ξ = 0.5	λ_{z} - CUSUM	$\xi = 0.6$	$λ_{z}$ - CUSUM	ξ = 0.5	$λ_{z}$ - CUSUM	$\xi = 0.6$	
4	2	43.49	30.056	53.792	41.106	57.515	45.086	98.951	60.790	
	3	18.350	13.637	23.216	19.747	23.887	21.784	31.581	31.436	
	4	10.088	7.757	13.662	11.069	13.908	12.270	18.272	18.148	
	5 6	7.574 5.670	4.891 3.459	9.962 7.784	7.235 5.170	10.037 7.827	7.725 5.305	13.342 10.112	11.493 7.998	
	7	4.803	2.606	6.803	3.829	6.231	3.899	8.338	5.959	
	8	4.159	1.988	5.938	2.955	5.563	3.040	7.638	4.591	

Table 3 The ARL1 of $_{\lambda}$ _ - CUSUM chart and EWMA_2-chart for shift in parameter λ

Figure 1 The ARL₁ of the, λ_{z} - CUSUM chart and EWMA₂-chart for the shifts in parameter λ

Conclusions

The purpose of this paper was to study of the *CUSUM chart*, *EWMA-chart* and *c-chart* to detect parameter shifts of λ for the *ZIGP* process with over-dispersion. The three charts were, the λ_z - *CUSUM chart*, *EWMA_z-chart* and c_z -*chart*. The λ_z - *CUSUM chart* was a *CUSUM chart* where cumulative sum statistics constructed base on the log-likelihood ratio. The *EWMA_z-chart* was a *EWMA-chart* based on the *ZIGP* process. The *c_z-chart* was a *c-chart* based on the *ZIGP* process. The *average* run length (*ARL*) of these chats were considered. The results of the comparisons are summarized as follows, the *EWMA_z-chart* performs better than the λ_z - *CUSUM chart* because its performance in detection in mean shift is faster for all level values of the parameters in the processes.

Acknowledgment

The author would like to thank Rajamangala University of Technology Lanna for the financial support during this research.

References

Famoye, F. and Singh, K. P. (2003). On inflated generalized Poisson regression models. Advance and Applied Statistics, 3, 145–158.

_____ วารสารวิทยาศาสตร์บูรพา ปีที่ 21 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 2559

- Famoye, F. and Singh, K. P. (2006). Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data. Journal of Data Science, 4, 117-130.
- Gan, F.F. (1990). Monitoring Poisson Observations Using Modified Exponentially Weighted Moving Average Control Charts. Communications in Statistics-Simulation and Computation, 19, 103-104.
- Gan, F.F. (1991). An Optimal Design of CUSUM Quality Control Charts. Journal of Quality Control, 23, 279-286.
- Katemee, N. and Mayureesawan, T. (2013). CUSUM Charts for Zero-Inflated Generalized Poisson Process. Far East Journal of Mathematical Sciences, 77, 225-243.
- Lucus, J.M. (1976). *The Design and Use of V-mask Control Schemes*. Journal of Quality Control, 8, 1-12.
- Montgomery, D.C. (2005). Introduction to Statistical Quality Control 5th Edition. United States: John Wiley & Sons. 160 290.
- Page, E.S. (1954). Continuous Inspection Schemes. *Biometrics*, 41, 100-115.